

May 2, 2022 2000-770-01

Mr. Andrew Hass U.S. Environmental Protection Agency Region III 1650 Arch Street (3HS21) Philadelphia, PA 19103-2029

RE: Monthly Progress Report for April 2022 Activities Stanley Kessler Site, Upper Merion Township Montgomery County, Pennsylvania

Dear Mr. Hass:

This monthly progress report is submitted in accordance with Section 34 of the Consent Decree for the above-referenced Site that was entered in the United States District Court for the Eastern District of Pennsylvania in the matter of United States v. PSD Queens Drive LP, et al., Civil Action No. 07-1137 on October 11, 2007 (the "Consent Decree"). This progress report describes the activities completed during April 2022 and the anticipated activities for May 2022. This report is organized into the major headings that correspond to the specific requirements listed as items (a) through (g) in Section 34 of the Consent Decree.

A. ACTIVITIES COMPLETED DURING APRIL 2022

- The April 2022 monthly Site visit was conducted on April 19, 2022.
- The April 2022 monthly system effluent sample collection occurred on April 19 2022.
- Depth to water measurements were collected from all Site wells on April 19, 2022.
- On April 19, 2022, Advanced GeoServices replaced the sediment bag filters.

B. RESULTS OF SAMPLING AND TESTS DURING MARCH 2022 AND APRIL 2022

- The March 2022 effluent sample results have been validated and are attached. There were no exceedances of the NPDES Permit Instantaneous Maximum Discharge Limit.
- The April 2022 monthly depth to water measurements and water elevations are attached.
- The Groundwater Treatment System Potentiometric Map for April 2022 is presented as Figure
 1.
- The April 2022 effluent sample is being analyzed and the results will be submitted when validation is complete.
- The samples collected during the first Semi-Annual Groundwater Sampling Event for 2022 have been analyzed and the results are attached.
- The groundwater trichloroethene (TCE) concentrations for the semi-annual sampling events from September 2002 through March 2022 are shown on Figure 2.

• Graphs demonstrating potential trends for TCE, 1,1,1-trichloroethane (1,1,1-TCA), and 1,1 dichloroethene (1,1-DCE) over time have been attached.

C. <u>COMPLETED PLANS AND DELIVERABLES IN APRIL 2022</u>

The monthly progress report for March 2022 was submitted on April 1, 2022.

D. PLANNED ACTIVITIES FOR MAY 2022

 The May 2022 site visit, the monthly depth to water measurements from site wells and the monthly effluent sampling are scheduled to be conducted during the week of May 9, 2022.

E. PERCENTAGE OF WORK COMPLETED

	<u>Activity</u>	Percent Completed
1.	Work Plan Preparation	100%
2.	Design Investigation Implementation	100%
3.	Combined Preliminary and Pre-Final Design	100%
4.	Final Design	100%
5.	Installation of the Remedy	100%

F. MODIFICATIONS TO THE WORK PLAN

• No modifications were made to the Work Plan during this reporting period.

G. COMMUNITY RELATIONS SUPPORT

No community relations support was conducted during this reporting period.

If you have any questions concerning the activities documented in this progress report or require additional information, please call me at

Sincerely,

MONTROSE

Enclosures w-CD

cc: Wayne Harms, PADEP (PDF only, w/o CD)
Janet Serfass, Upper Merion Township (PDF only, w/o CD)
Mitchell Klevan, Mitchell H. Klevan, LLC (PDF only, w/o CD)
Ashton Jones, Upper Merion Township (PDF only, w/o CD)
Geoff Hickman, Public Works Director for UMT (PDF only, w/o CD)

KESSLER Monthly 03/2022, 03/14/2022

460-254696, Project# 2000-770

Sample Location			EFFI	LUEN	Т
Lab ID	NPDES Permit		460-25	54696-	-01
Sample Date	Instantaneous		3/14	4/2022	,
Matrix	Maximum		Grou	ndwat	er
Remarks	Discharge Limit				
Parameter		Units	Result	Q	RL
Volatiles					
1,1,1-Trichloroethane	400	ug/L	7.6		1
1,1-Dichloroethene	14	ug/L	0.36	J	1
Benzene	10	ug/L		U	1
Chlorobenzene	200	ug/L		U	1
Methylene Chloride	10	ug/L		U	1
Tetrachloroethene	10	ug/L		U	1
Trichloroethene	10	ug/L		U	1
Total Metals					
Manganese	3,000	ug/L	1060		8
Conventionals					
Total Suspended Solids	60	mg/L		U	2.5

Q = Qualifier

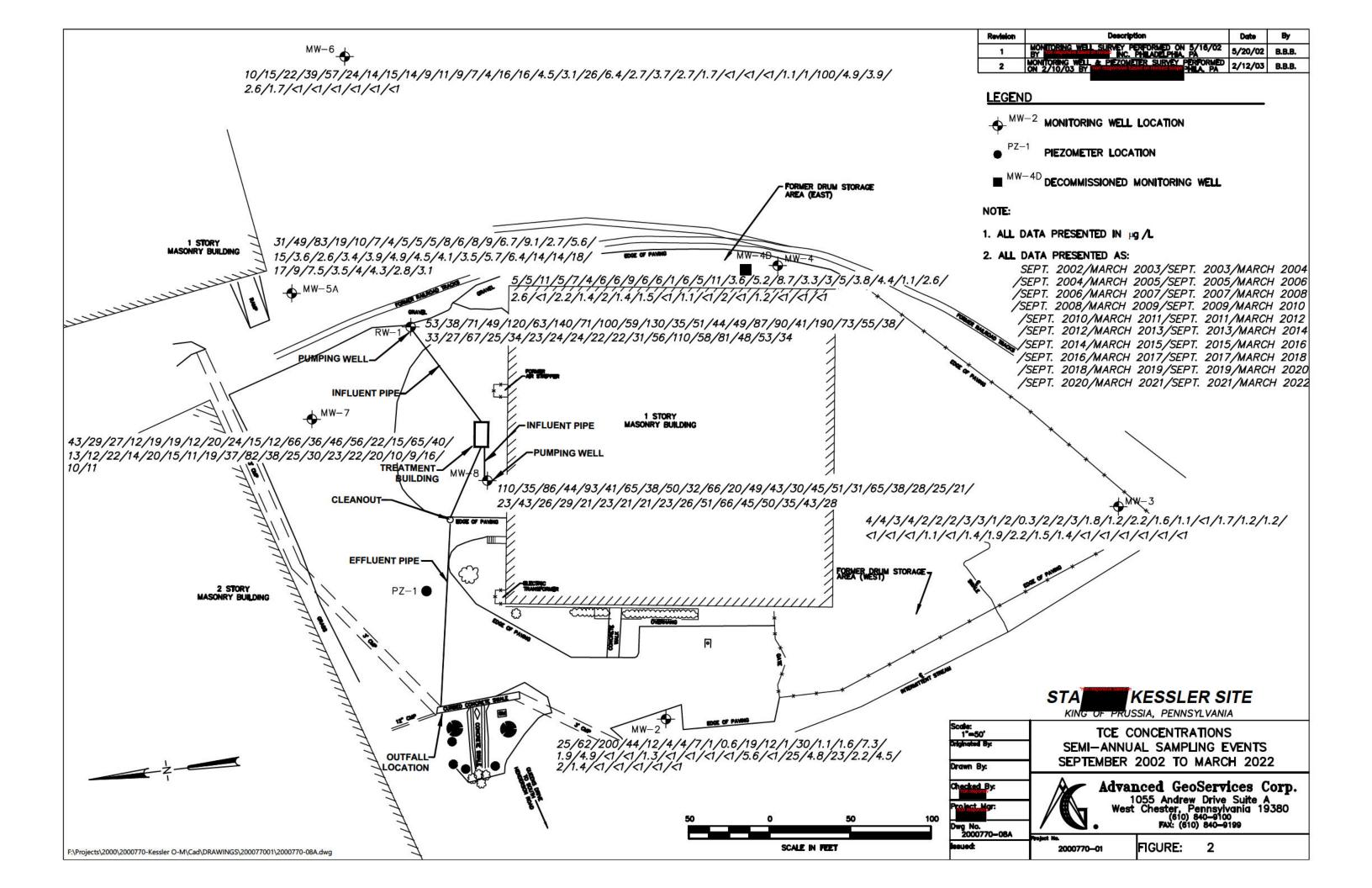
RL = Reporting Limit

U = Not Detected

J = Estimated

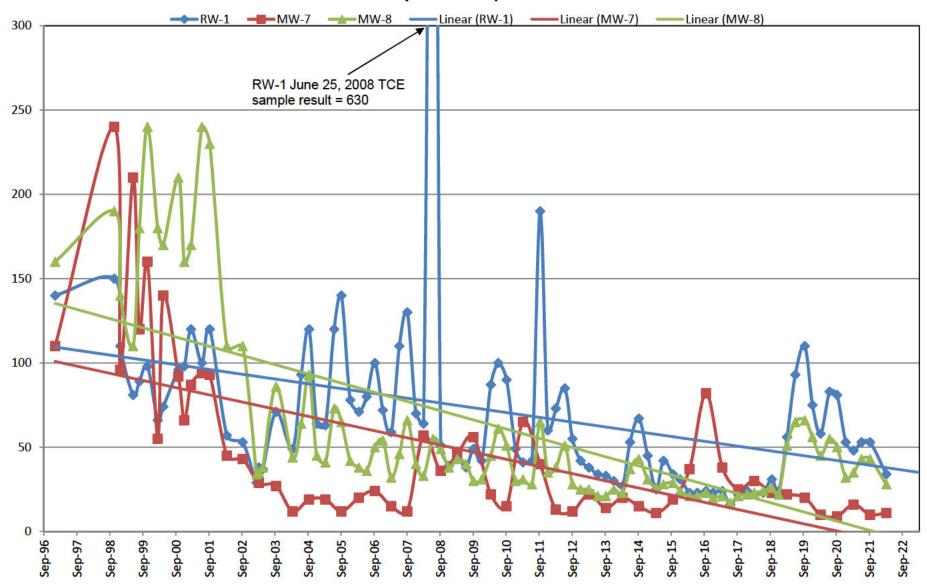
KESSLER 1st Half 2022 Groundwater, 3/14-15/2022 460-254696, Project# 2000-770

Sample Location		D	W-1		3.0	W-8		M	W-2		M	7-2D	1	M	W-3		M	W-4		1 10	V-5A	-	10	W-6		100	W-7	- 20	EB-01-0	2150	2	TB-01-03	21422
Lab ID	9 51	460-25		5.00	460-25		02	460-25		04	460-25		05	460-25		06	460-25		07	460-25		00	460-25		00	460-25		10	460-2546			460-25469	
			1/202		3/14				/2022	04	3/15				/2022			/2022			/2022	08	1000	/2022	100		/2022		3/15/2		1	3/14/20	
Sample Date				$\overline{}$			_			W									_									_			+		
Matrix	4 6	Grou	nawa	ter	Groun	idwa	ter	Groun	idwate	1	Groun FD of			Groun	idwat	er	Groun	ndwate	er	Grou	idwate	1	Groun	idwai	ter	Groun	idwat	er	Aque		-1-	Aqueo	
Remarks	TTutte	D L	lal	DI	D 14		DI	D 14	^	DI				D 14	0	DI	D 14		DI	Danile	0	DI	D 14	0	DI	D It	0	DI	Equipmen			Trip Bla	
Parameter Volatiles	Units	Kesun	IV	KL	Kesuit	V	KL	Result	V.	KL	Result	Ų	KL	Result	Ų	KL	Kesuit	Q	KL	Result	Q.	KL	Kesmt	Q	KL	Kesuit	Q	KL	Result	Q I	KL I	vesmt C	5 LKL
1.1.1-Trichloroethane	/T	19	_	1	17		1		U	1		U	1		U	1		U	1	43		1		U	1	16		1		U T	1 1	T T	U 1
1,1,2.2-Tetrachloroethane	ug/L	19	U	1	17	TT	1		U	1		U	1		U	1		U	1	43	U	1		U	1	10	U	1		U	1		U 1
1,1,2,7-Tetrachioroethane	ug/L		U	1		TT	1	- 4	U	1		U	1	14	U	1		U	1		U	1	- 10	U	1	- 3	U	1		U	1		U 1
CALLAND MADE PROGRAMMENT ACTION	ug/L	st.	U		2 5	TT	1	- 55	U	1	5	U	1	sč .	U	1		U		0 29	I	1		U	1	0 34	J	1	10	U	1		U 1
1,1-Dichloroethane	ug/L	2.0	U	-	0.7	U		-	U	1			1		1000	1			1	11 700	J	_	- 3	-	1	The Country of the Land	J			_	1		
1,1-Dichloroethene	ug/L	32		1	27		1			-		U	_		U	1		U	1	0 49	-	1		U	1	17	**	1		U	1		U 1
1,2,4-Trichlorobenzene	ug/L		U			U	1	- 4	U	1		U	1	5	U	1	- 6	U	1		U	1	- 6	U	1		U	1		U	1		U 1 U 1
1,2-Dibromo-3-Chloropropane	ug/L	i.	U		1	U		- 2	U		- 1	U		ė.			50	U		4			- 51	U	-	100	U						
1,2-Dibromoethane	ug/L	8	U	1		U	1	.55		1	o 8	_	1	8	U	1			1	5	U	1	.55		1			1		U	1		
1,2-Dichlorobenzene	ug/L		_	_		U	1		U	1		U	1		U	1		U	1		U	1	- 1	U	1		U	1		U	1		U 1
1,2-Dichloroethane	ug/L	Ď.	U			U	1	- C	U	1		U	1	3	U	1		U	1		U	1	- 6	U	1		U	1		U	1		U 1
1,2-Dichloropropane	ug/L		_			_	1	-		1		_	-		_	1		U	1		_	1			1	- 3		1		_	1	10.00	U 1
1,3-Dichlorobenzene	ug/L	si.	U		2 5	U	1	22	U	1	y s	U	1	\$	U	1		U	1		U	1	20	U	1	- 1	U	1		U	1		U 1
1,4-Dichlorobenzene	ug/L		U	1		U	1	21	U	1		U	1	18	U	1		U	1		U	1	30"	U	1		U	1		U	1		U 1
2-Butanone (MEK)	ug/L		U	5		U	5		U	5		U	5		U	5		U	5		U	5		U	5		U	5		U	5		U 5
2-Hexanone	ug/L					U	5	- 8		5			5	5	U	5	- 5	U	5		U	5	- 6	U	5			5			5	V., 15	
4-Methyl-2-pentanone (MIBK)	ug/L	ż	U	100	1	U	5	- 4	U	5	0 2	U	5	ė	U	5	50	U	5	4	U	5	- S	U	5	15	U	5	100		5	20 2713	U 5
Acetone	ug/L	20	U	- 17		U	5	- 3	U	5		U	5	20	U	5		U	5		U	5		U	5		U	5		U	5	100	U 5
Benzene	ug/L		U	1		U	1		U	-		U	1		U	1		U	1		U	1		U	1		U	1		U	1		U 1
Bromoform	ug/L		U	1		U	1	- 6	U	1		U	1		U	1	- 4	U	1		U	1	- 0	U	1		U	1	1.5	U	1	6.0	U 1
Bromomethane	ug/L		U			U	1		U	1		U	1		U	1		U	1		U	1	- 2	U	1	- 7	U	1			1		U 1
Carbon disulfide	ug/L	S.			2 3	_	1	22	U	1	y s	U	1	\$	U	1		U	1	2 3	U	1	- 20	U	1	- 10	U	1	10	U	1		U 1
Carbon tetrachloride	ug/L	18	U	_		U	1	90	U	1		U	1		U	1	- 5	U	1	0.72	U	1	20	U	1	0.60	U	1		U	1		U 1
Chlorobenzene	ug/L		U	1		U	1		U	1		U	1		U	1		U	1	0 73	J	1	-	U	1	0 68	J	1		U	1		U 1
Chlorobromomethane	ug/L	3	U	1		U	1	- 6	U	1		U	1	9	U	1	- 8		1	6	U	1	- 0	U	1	-	U	1	77	U	1	5.0	U 1
Chlorodibromomethane	ug/L	÷	U			U	1	- 60	U	1	0 2	U	1	ė.	U	1		U	1	4	U	1	- ès	U	1	- 8	U	1		U	1		U 1
Chloroethane	ug/L	S.	_	_	2 2	_	-	0.27	_	1	0.22	_	•	8		1	- 2	1	1		_	1	- 3		1		-	1	200	_	1	51	
Chloroform	ug/L		U	1		U	1	0 37	J U	1	0 33	U	1		U	1		U	1		U	1	- 9	U	1		U	1		U	1		U 1 U 1
Chloromethane cis-1.2-Dichloroethene	ug/L	0 66	1	1	0 74	T	1	- 6	U	1		U	1	9	U	1		U	1	0.86	J	1	0 39	J	1	0.8	J	1	1.5	U	1	6.0	U 1 U 1
cis-1,2-Dichloropropene	ug/L ug/L	0 00	U		0 /4	U	1		U	1		U	1		U	1		U	1	0.80	U	1	0.39	U	1	08	U	1		U	1		U 1
	-	10	U			U		10	U			U	_		U	1	- 0	U			U	_	- 10	U	-	-	U	_		U	1		
Dichlorobromomethane Ethylbenzene	ug/L ug/L	4	U	1	5 3	U	1	25	U	1	è 8	U	1	8	U	1	31	U	1	8 :	U	1	39	U	1	. 19	U	1		U	1		U 1 U 1
Methylene Chloride	ug/L ug/L		U			U	1		U	1		U	1		U	1		U	1		U	1	- 5	U	1	3.	U	1		U	1		U 1
			U	1		TT	1	- 4	U	1		U	1	9	U	1	-	U	1		U	1	- 6	U	1		U	1		U	1		U 1
Styrene Tetrachloroethene	ug/L ug/L	0 88	J	1	0 79	J	1	90	U	1		U	1	36	U	1		U	1		U	1	, (C)	U	1	0.55	J	1		U	1	4.00	U 1
Toluene	ug/L	0 00	U	_	0 19	TT	1	- 22		1	ý 4	U	1	50	U	1	- 2	U	1	2	U	1	- 23	U	1	0 33	U	1		U	1		U 1
trans-1.2-Dichloroethene	ug/L ug/L	4	U			U	1	-	U	1		U	1	-	U	1	- 8	U	1		U	1		U	1	-	U	1		U	1		U 1
trans-1,3-Dichloropropene	ug/L	9	II	1		II	1	- 0	U	1		U	1	9	U	1		U	1		U	1	- 0	U	1	-	U	1		U	1	6.0	U 1
Trichloroethene	ug/L	34	1	1	28	U	1	0 47	J	1	0 34	I	1	0 62	J	1	0 71	I	1	31	U	1		U	1	11	U	1		U	1	10.00	U 1
Vinyl chloride	ug/L	74	U	1	20	TT	1	047	U	1	U 54	U	1	0 02	U	1	0 /1	U	1	J I	U	1	- 10	U	1	11	U	1		U	1	1,000	U 1
Xvlenes, Total	ug/L ug/L	2)	U		5 8	II	2	Ş-	U	2		U	2	4	U	2	- 1	U	2	8 -	U	2	\$5	U	2	- 19	U	2		U	2		U 2
Total Metals	ugit	et.	10	2		U	- 2		U	2		U	- 4		U	2		U			U	4		U	2		U			_	2		J 2
Manganese	ug/L	760	1	8	1230		8		NA		Т	NA			NA			NA			NA			NA			NA		N	IA	-	N.	IA
Conventionals	ug/L	700	ш	0	1230	ш	0		MA	_		11/1			11/1	لبنا		MA			11/1	_		INA	щ		1171		1	IA.		IV	Α
Total Suspended Solids	mg/L	R)	TIT	25		III	25	33	NA			NA	31	2)	NA	W 1	73	NA			NA		- 3	NA		1	NA	. 39	l N	IA	1	I N	IΔ
Total Suspended Solids	шЯГ		U	43		U	43		11/1			IM			INA			INA			TAM			IVA			IM		1	1/A		IV.	41

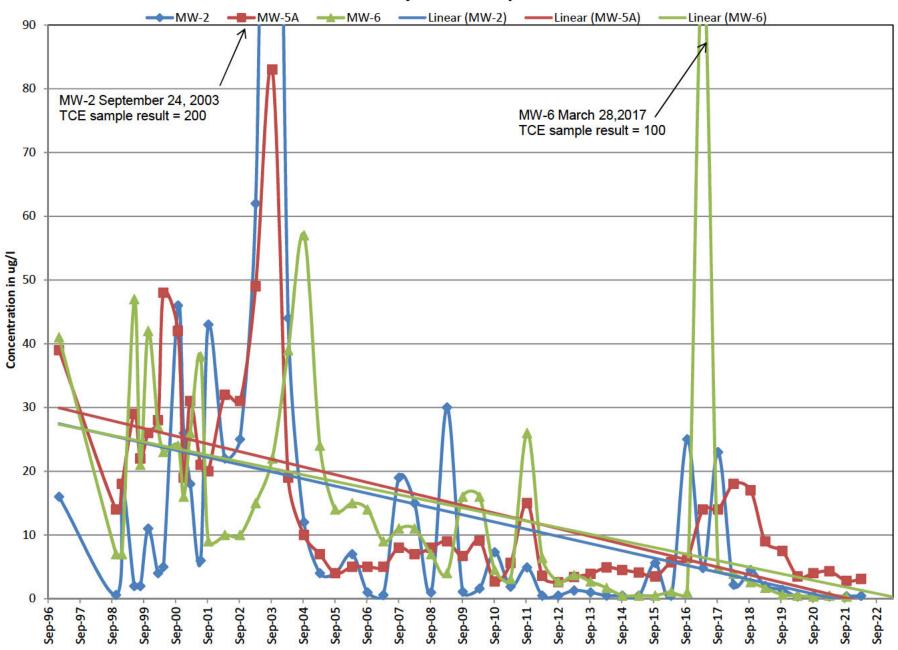

STANLEY KESSLER Monthly Depth to Water and Water Elevation Measurements 4/19/2022

		MO	ONTHLY	DEPTE	I TO WA	TER LE	VELS (fe	eet)	5
Date	RW-1	MW-2	MW-3	MW-4	MW-5A	MW-6	MW-7	MW-8	PZ-1 ¹
4/19/2022	84.52	87.31	72.98	77.19	85.02	95.25	84.30	99.21	84.82

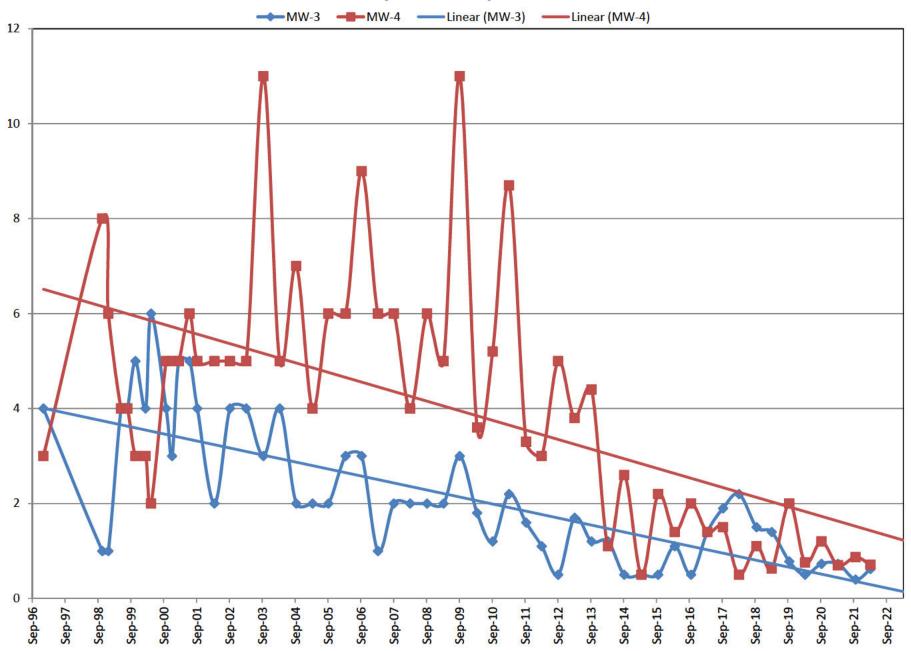
		MONTHLY WATER ELEVATIONS (feet)												
Date	RW-1	MW-2	MW-3	MW-4	MW-5A	MW-6	MW-7	MW-8	PZ-1 ¹					
Top of Casing Elevation	142.06	147.67	148.7	149.64	144.49	156.08	142.46	148.76	142.41					
4/19/2022	57.54	60.36	75.72	72.45	59.47	60.83	58.16	49.55	57.59					


Notes:

1 - PZ-1 was installed in February 2003

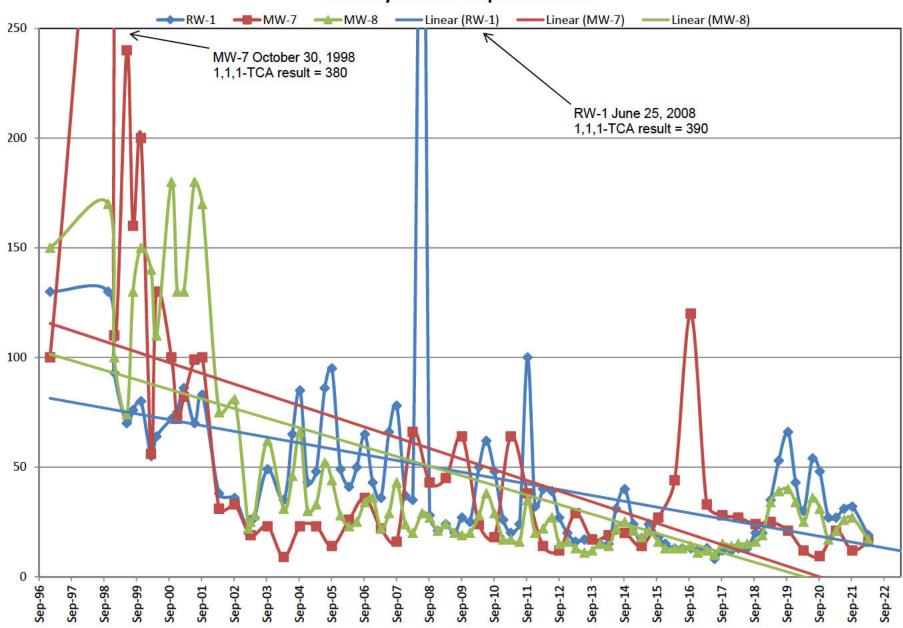

TCE Concentration Trends In RW-1, MW-7 and MW-8

Stanley Kessler Superfund Site

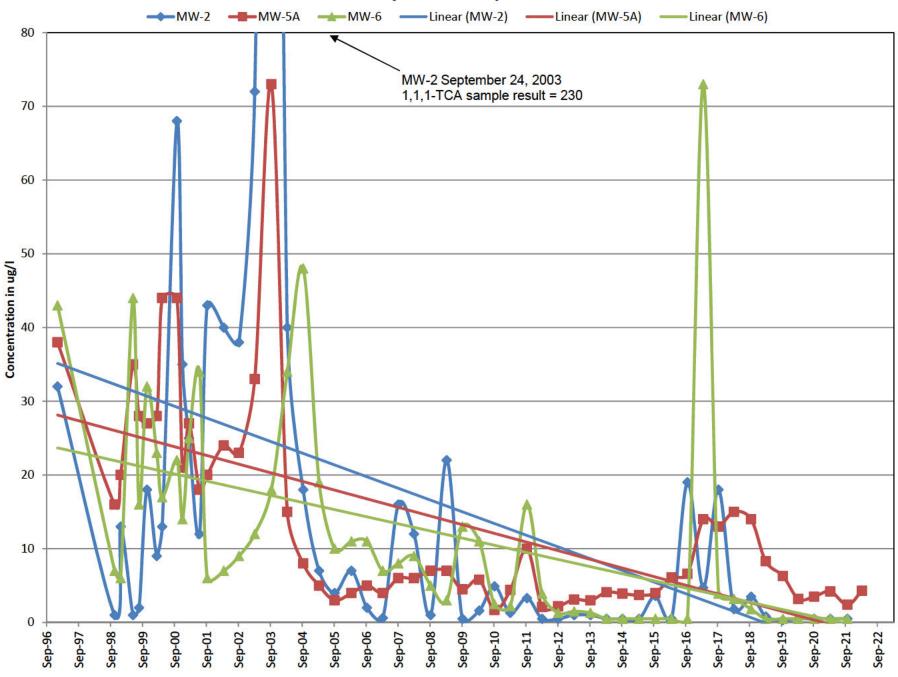


Note: For sampling results which were less then the detection limit, results were assumed to be half of the detection limit to plot the trend lines. G:\Projects\2000\2000770-Kessler O-M\Work Documents\Concentration Trends\TCE-TCA-Results\TCE in RW-1, MW-7

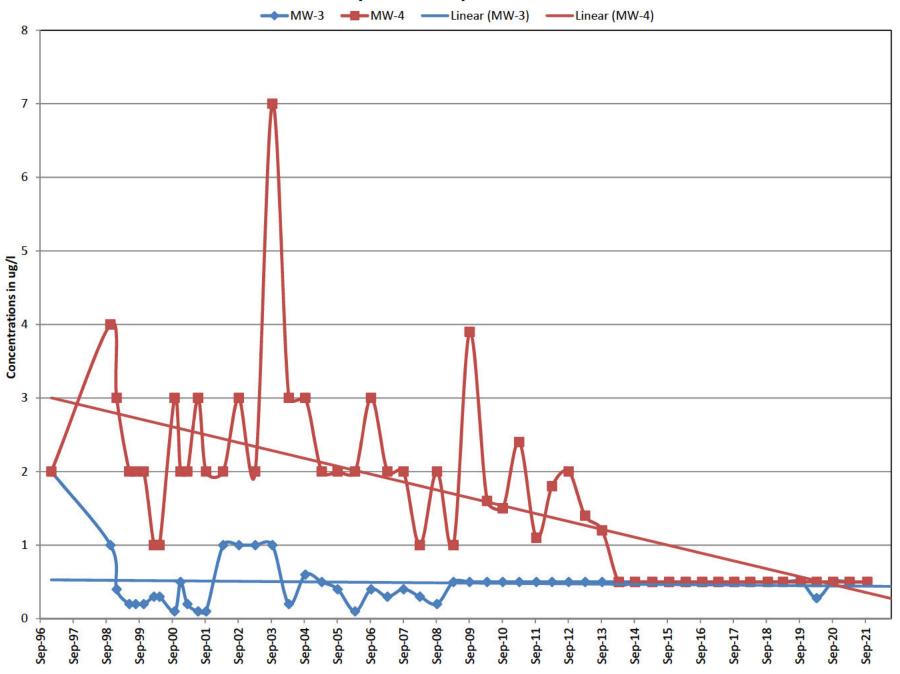
TCE Concentration Trends in MW-2, MW-5A and MW-6 Stanley Kessler Superfund Site



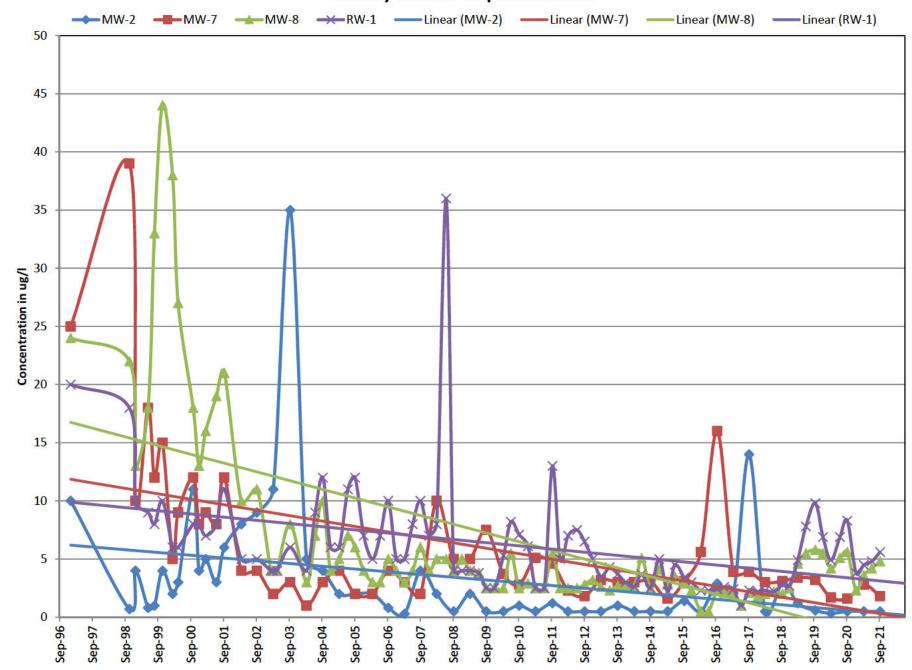
TCE Concentrations in Background Wells MW-3 and MW-4 Stanley Kessler Superfund Site


Note: For sampling results which were less then the detection limit, results were assumed to be half of the detection limit to plot the trend lines. G:\Projects\2000\2000\70-Kessler O-M\Work Documents\Concentration Trends\TCE-TCA-Results\TCE in MW-3 and M

1,1,1-TCA Concentrations in RW-1, MW-7 and MW-8 Stanley Kessler Superfund Site



Note: For sampling results which were less then the detection limit, results were assumed to be half of the detection limit to plot the trend lines. G:\Projects\2000\2000770-Kessler O-M\Work Documents\Concentration Trends\TCE-TCA-Results\1,1,1-TCA in RW-1


1,1,1-TCA Concentrations in MW-2, MW-5A and MW-6 Stanley Kessler Superfund Site

1,1,1-TCA Concentrations in Background Wells MW-3 and MW-4 Stanley Kessler Superfund Site

1,1-DCE Results in MW-2, MW-7, MW-8 and RW-1 Stanley Kessler Superfund Site

DATA VALIDATION SUMMARY Level I

Site Name:	Kessler			La	boratory:
Project Number:	2000-770			Ca	sse/Order/SDG # 460-254696
Sampling Date(s):	3/14/2022				
Compound List: Method:	Volatiles, Manganese 624.1, 6020B & SM 2				
The following table in	dicates the data validation	n criteria e	xamine	d, any prob	lems identified, and the QA action applied.
Data Validation Criter	ria:	Accept	FYI	Qualify	Comments
Holding Times Blank Analysis Field Duplicate Analy Surrogate Recoveries Matrix Spike Analysis Laboratory Control Sa Laboratory Duplicate Overall Assessment of Other: General Comments:	s (MS/MSD) ample Analysis (LCS) Analysis	X X X X X	X		NA Metals MS recovery Not project specific (Metals and TSS)
	tion required. ation only, no qualification ejected, estimated or biase		y.		

QA Scientist_____

Date_____03/24/2022

NA - Not Applicable

Client Sample Results

Client: Advanced GeoServices Corporation

Project/Site: Kessler

Client Sample ID:

Lab Sample ID: 460-254696-1 Date Collected: 03/14/22 10:05

Matrix: Water

Job ID: 460-254696-1

Date Received: 03/16/22 18:40

Method: 624.1 - Volatile (Organic Compou	nds (GC/N	1S)						
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Methylene Chloride	0.32	U	1.0	0.32	ug/L			03/20/22 17:03	1
1,1-Dichloroethene	0.36	J	1.0	0.12	ug/L			03/20/22 17:03	1
1,1,1-Trichloroethane	7.6		1.0	0.24	ug/L			03/20/22 17:03	1
Trichloroethene	0.31	U	1.0	0.31	ug/L			03/20/22 17:03	1
Benzene	0.43	U	1.0	0.43	ug/L			03/20/22 17:03	1
Tetrachloroethene	0.25	U	1.0	0.25	ug/L			03/20/22 17:03	1
Chlorobenzene	0.38	U	1.0	0.38	ug/L			03/20/22 17:03	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac

Surrogate	%Recovery	Qualifier	Limits	Prepared Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	101		60 _ 140	03/20/22 17:03	1
Toluene-d8 (Surr)	98		60 ₋ 140	03/20/22 17:03	1
4-Bromofluorobenzene	93		60 - 140	03/20/22 17:03	1
Dibromofluoromethane (Surr)	98		60 _ 140	03/20/22 17:03	1

Method: 6020B - Metals (ICP/MS	5)								
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Manganese	1060		8.0	1.5	ug/L		03/21/22 10:02	03/22/22 19:10	1

General Chemistry									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Total Suspended Solids	2.5	U	2.5	2.5	mg/L			03/20/22 07:09	1

Lab Sample ID: 460-254696-2 Client Sample ID: RW-1 Date Collected: 03/14/22 10:15 **Matrix: Water**

Date Received: 03/16/22 18:40

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,1,1-Trichloroethane	19		1.0	0.24	ug/L			03/21/22 13:44	1
1,1,2,2-Tetrachloroethane	0.37	U	1.0	0.37	ug/L			03/21/22 13:44	1
1,1,2-Trichloroethane	0.20	U	1 <u>Q</u>	0.20	ા છ્∤ી_			03/21/22 13:44	1
1,1-Dichloroethane	0.26	U	1.0	0.26	ug/L			03/21/22 13:44	1
1,1-Dichloroethene	3.2		1.0	0.26	ug/L			03/21/22 13:44	1
1,2,4-Trichlorobenzene	0.37	U	1.0	0.37	ug/L			03/21/22 13:44	1
1,2-Dibromo-3-Chloropropane	0.38	U	1.0	0.38	ug/L			03/21/22 13:44	1
1,2-Dibromoethane	0.50	U	1.0	0.50	ug/L			03/21/22 13:44	1
1,2-Dichlorobenzene	0.21	U	1.0	0.21	ug/L			03/21/22 13:44	1
1,2-Dichloroethane	0.43	U	1.0	0.43	ug/L			03/21/22 13:44	1
1,2-Dichloropropane	0.35	U	1.0	0.35	ug/L			03/21/22 13:44	1
1,3-Dichlorobenzene	0.34	U	1.0	0.34	ug/L			03/21/22 13:44	1
1,4-Dichlorobenzene	0.33	U	1.0	0.33	ug/L			03/21/22 13:44	1
2-Butanone (MEK)	1.9	U	5.0	1.9	ug/L			03/21/22 13:44	1
2-Hexanone	1.1	U	5.0	1.1	ug/L			03/21/22 13:44	1
4-Methyl-2-pentanone (MIBK)	1.3	U	5.0	1.3	ug/L			03/21/22 13:44	1
Acetone	4.4	U	5.0	4.4	ug/L			03/21/22 13:44	1
Benzene	0.20	U	1.0	0.20	ug/L			03/21/22 13:44	1
Bromoform	0.54	U	1.0	0.54	ug/L			03/21/22 13:44	1
Bromomethane	0.55	U	1.0	0.55	ug/L			03/21/22 13:44	1
Carbon disulfide	0.82	U	1.0	0.82	ug/L			03/21/22 13:44	1
Carbon tetrachloride	0.21	U	1.0	0.21	ug/L			03/21/22 13:44	1
Chlorobenzene	0.38	U	1.0	0.38	ug/L			03/21/22 13:444	/2022 1

Page 8 of 39 3/24/2022

Site Name: Kessler

Lab ID	Sample ID	Matrix	Analyte	Sample Date	Date Analyzed	Analysis Hold Time (days)	Days to Analysis	Qualify
460-254696-01	Horriesponsive based or rev	Groundwater	Volatiles	3/14/2022	3/20/2022	14	6	
460-254696-01		Groundwater	Manganese	3/14/2022	3/22/2022	180	8	
460-254696-01		Groundwater	Total Suspended Solids	3/14/2022	3/20/2022	7	6	- 80

Job ID: 460-254696-1

Client: Advanced GeoServices Corporation Project/Site: Kessler

Method: 8260D - Volatile Organic Compounds by GC/MS (Continued)

Lab Sample ID: 460-254696-3 MSD

Matrix: Water

Analysis Batch: 834599

Client Sample ID: MW-8

Prep Type: Total/NA

	Sample	Sample	Spike	MSD	MSD				%Rec.		RPD
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Chlorobenzene	0.38	U	20.0	20.4		ug/L		102	80 - 119	0	30
Chlorobromomethane	0.41	U	20.0	21.2		ug/L		106	73 - 126	1	30
Chlorodibromomethane	0.28	U	20.0	20.8		ug/L		104	58 - 130	1	30
Chloroethane	0.32	U	20.0	22.0		ug/L		110	50 _ 150	7	30
Chloroform	0.33	U	20.0	20.7		ug/L		104	78 ₋ 125	2	30
Chloromethane	0.40	U	20.0	18.2		ug/L		91	38 - 150	3	30
cis-1,2-Dichloroethene	0.74	J	20.0	21.3		ug/L		103	78 ₋ 121	2	30
cis-1,3-Dichloropropene	0.22	U	20.0	18.9		ug/L		94	74 - 125	0	30
Dichlorobromomethane	0.34	U	20.0	21.0		ug/L		105	72 - 121	0	30
Ethylbenzene	0.30	U	20.0	19.9		ug/L		99	78 ₋ 120	2	30
Methylene Chloride	0.32	U	20.0	20.0		ug/L		100	74 ₋ 127	3	30
Styrene	0.42	U	20.0	20.8		ug/L		104	75 ₋ 127	2	30
Tetrachloroethene	0.79	J	20.0	21.8		ug/L		105	70 - 127	0	30
Toluene	0.38	U	20.0	20.1		ug/L		100	78 ₋ 119	2	30
trans-1,2-Dichloroethene	0.24	U	20.0	19.9		ug/L		100	74 - 126	2	30
trans-1,3-Dichloropropene	0.22	U	20.0	20.1		ug/L		101	66 - 127	1	30
Trichloroethene	28		20.0	44.7		ug/L		81	71 - 121	3	30
Vinyl chloride	0.17	U	20.0	19.0		ug/L		95	61 - 144	5	30
Xylenes, Total	0.65	U	40.0	40.7		ug/L		102	78 ₋ 122	2	30

MSD MSD

Surrogate	%Recovery	Qualifier	Limits
1,2-Dichloroethane-d4 (Surr)	107		75 - 123
4-Bromofluorobenzene	101		76 ₋ 120
Dibromofluoromethane (Surr)	101		77 - 124
Toluene-d8 (Surr)	97		80_120

Method: 6020B - Metals (ICP/MS)

Lab Sample ID: MB 460-834577/1-A

Matrix: Water

Analysis Batch: 834859

Client Sample ID: Method Blank

Prep Type: Total/NA Prep Batch: 834577

MB MB Analyte Result Qualifier RL MDL Unit Prepared Analyzed Dil Fac 8.0 03/20/22 19:46 03/22/22 19:32 Manganese 1.5 U 1.5 ug/L

Lab Sample ID: LCS 460-834577/2-A

Matrix: Water

Analysis Batch: 834859

Client Sample ID: Lab Control Sample Prep Type: Total/NA

Prep Batch: 834577

Spike LCS LCS %Rec. Added Limits Analyte Result Qualifier Unit D %Rec 250 Manganese 262.1 ug/L 105 80 - 120

Lab Sample ID: 460-254696-3 MS

Matrix: Water

Analysis Batch: 834859

Client Sample ID: MW-8 Prep Type: Total/NA Prep Batch: 834577

Spike MS MS %Rec. Sample Sample Result Qualifier Added Result Qualifier Limits Analyte Unit D %Rec Manganese 1230 250 1545 4 ug/L 128 75₋125

03/24/2022

Page 26 of 39

3/24/2022

DATA VALIDATION REPORT

OF

STANLEY KESSLER SUPERFUND SITE

GROUNDWATER SAMPLES

COLLECTED ON MARCH 14-15, 2022

FOR

VOLATILE ORGANIC, INORGANIC AND CONVENTIONAL ANALYSES

LABORATORY SAMPLE DELIVERY GROUP 460-254696

PREPARED FOR:

STANLEY KESSLER AND COMPANY STANLEY KESSLER SUPERFUND SITE KING OF PRUSSIA, PENNSYLVANIA

PREPARED BY:

ADVANCED GEOSERVICES CORP. WEST CHESTER, PENNSYLVANIA

PROJECT NUMBER 2000-770-03 April 7, 2022

DATA VALIDATION REPORT VOLATILE ORGANIC COMPOUNDS

INTRODUCTION

This data validation report addresses the volatile organic results from the groundwater samples collected on March 14-15, 2022 as part of the Stanley Kessler Superfund Site, King of Prussia, Pennsylvania Semiannual Groundwater Investigation sampling event. Eight groundwater samples and a sample duplicate were analyzed for the target compound list (TCL) volatile organic compounds (VOCs) by USEPA *Test Methods for Evaluating Solid Waste Physical/Chemical Methods* (SW-846) Method 8260D. Samples were historically analyzed by USEPA Contract Laboratory Program (CLP) Statement of Work for Organic Analysis, Low Concentration Water, March 1995 (OLC02.1). At the laboratories request beginning in 2019 and upon review the methodology utilized was updated to the current SW-846 Volatile method. All samples were analyzed by

This review has been performed in accordance with the EPA "Contract Laboratory Program National Functional Guidelines for Organic Superfunds Methods Data Review," January 2017, with EPA Region III Modifications, September, 1994, when applicable. The findings presented in this report are based upon a review of all data supplied by the laboratory. The information examined consisted of sample results, analytical holding times, initial and continuing calibrations, gas chromatographic/mass spectrometric (GC/MS) instrument performance check, blank analysis results, laboratory control sample recoveries, matrix spike/matrix spike duplicate (MS/MSD) recoveries and relative percent differences (RPDs), surrogate spike recoveries, internal standard areas and retention times.

The qualified analytical results are presented on the data summary table. The data summary table lists all compounds which were analyzed and the associated results and qualifiers. Supporting documentation summarizing the specifics of this review is presented at the end of this report.

The method hold times were met for all samples. The GC/MS instrument performance check (BFB), internal standard areas and retention times were within the method criteria. All volatile system monitoring compound recoveries were within acceptance limits. No blank contamination was present. The laboratory control sample (LCS) recoveries were within acceptable limits. The MS/MSD recoveries for the parent sample MW-8 were within the laboratory control limits. The duplicate precision for the field duplicate sample, MW-2 were within acceptable criteria.

QUALIFIERS

No qualifiers were assigned.

SUMMARY

All data are usable as reported.

DATA VALIDATION REPORT INORGANIC ANALYSES

INTRODUCTION

This data validation report addresses the metal results from two groundwater samples collected on March 14, 2022 as part of the Stanley Kessler Superfund Site, King of Prussia, Pennsylvania Semiannual Groundwater Investigation sampling event. The samples were analyzed for Manganese using USEPA SW846 Method 6020B. All samples were analyzed by and reported under SDG 460-254696.

This review has been performed with guidance from the EPA "Contract Laboratory Program National Functional Guidelines for Inorganic Superfund Methods Data Review," January 2017, and EPA Region III modifications, April, 1993, when applicable. The findings presented in this report are based upon a review of all data supplied by the laboratory. The information examined consists (when applicable) of sample results, analytical holding times, initial and continuing calibrations, blank analysis results, laboratory control sample recoveries, matrix spike/matrix spike duplicate (MS/MSD) recoveries, relative percent differences (RPDs), contract required detection limits (CRDL), ICP interference check and serial dilutions.

The qualified analytical results are presented on the data summary table. The data summary tables list detected, undetected results and any qualifiers which have been applied. Support documentation summarizing the specifics of this review is presented at the end of this report.

The method hold times were met for all samples. The initial and continuing calibration verification recoveries were within acceptance limits. No blank contamination was present. Matrix spike/matrix spike duplicate recoveries, laboratory control sample, serial dilution and the ICP interference checks recoveries were within acceptable limits. The Laboratory duplicate sample was also within acceptable limits.

QUALIFIER

No qualifiers were assigned.

SUMMARY

All data are usable as reported.

DATA VALIDATION REPORT CONVENTIONAL PARAMETERS

INTRODUCTION

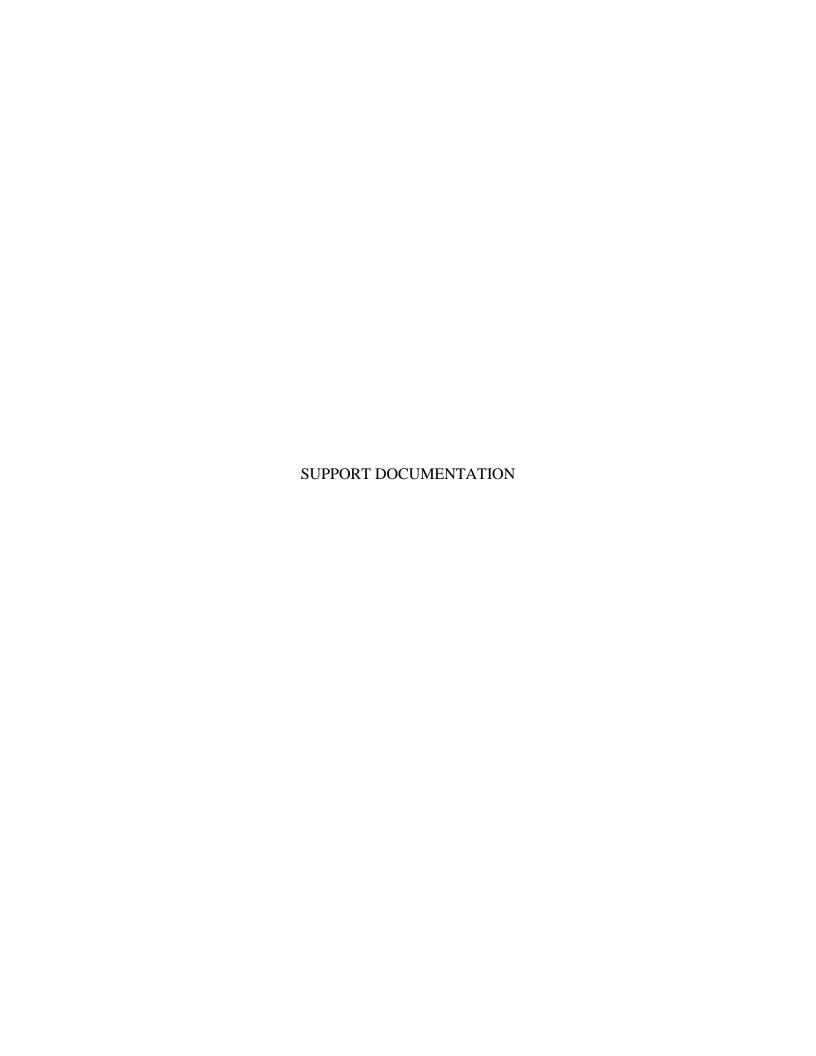
This data validation report addresses the conventional results from two groundwater samples collected on March 14, 2022 as part of the Stanley Kessler Superfund Site, King of Prussia, Pennsylvania Semiannual Groundwater Investigation sampling event. The samples were analyzed for total suspended solids (TSS) using Standard Methods 2540D. All samples were analyzed by and reported under SDG 460-254696.

This review has been performed in accordance with the US EPA "Contract Laboratory Program National Functional Guidelines for Inorganic Superfund Methods Data Review," January 2017, and EPA Region III Modifications, April, 1993, when applicable. The findings presented in this report are based upon a review of all data supplied by the laboratory. The information examined consisted of sample results, analytical holding times, blank analysis results, laboratory control sample recoveries, RPDs, and laboratory duplicates.

The qualified analytical results are presented on the data summary table. The data summary table lists all compounds that were analyzed and associated results and qualifiers. Support documentation summarizing the specifics of this review is presented at the end of this report.

Samples were analyzed within the method hold times. No blank contamination was present. Laboratory control percent recoveries were within control limits. The laboratory duplicate relative percent differences were within control limits. All TSS results are acceptable as reported.

QUALIFIERS


No qualifiers were assigned.

SUMMARY

All data are usable as reported.

QUALIFIER CODES

- U The analyte was analyzed for, but was not detected at the reporting limit.
- UJ The analyte was not detected; the associated reporting limit is an estimated value.
- J The analyte was positively identified and detected; however, the concentration is an estimated value because the result is less than the reporting limit or quality control criteria were not met.
- R The value reported has been rejected.
- D The value was obtained from a diluted sample.

VOLATILES DATA VALIDATION SUMMARY

Site Name: Project Number: Sampling Date(s): Compound List:	Kessler 2000-770 3/14-15/2022 Volatiles				aboratory: ase/Order No.:	460-254696	
26.4-1	02600						
Method:	8260D						_
The following table in	dicates the data validation	on criteria	examin	ed, any pr	oblems identified,	and the QA action applied.	
Data Validation Criter	ia:	Accept	FYI	Qualify	Comments		
Holding Times GC/MS Tuning Initial Calibrations Continuing Calibration Blank Analysis System Monitoring/Su Field Duplicate Analysis Laboratory Control Sa Internal Standard Are Target Compound Ider TIC Identification Overall Assessment of Other: General Comments:	rrogate sis (MS/MSD) mple Analysis (LCS) as/RT ntification	X X X X X X X X X X X X X X X			Functional Guide requires the analy tune every 12 hor tunes are only rec	thod 8260D and the National elines (11/2020) no longer ysis and verification of a BFB urs. Per the updates the BFB quired to be analyzed and initial calibration.	
Ceneral Comments.	cooler remp. 1.0 c						- 1
The state of the s	ion required. ation only, no qualificati jected, estimated or bias		nry.	QA Sci	"non respo ientist_	onsive based on revised scope	B "

04/05/2022

Lab Name:	Job No.: 460-254696-1
SDG No.:	
Client Sample ID: RW-1	Lab Sample ID: 460-254696-2
Matrix: Water	Lab File ID: T63050.D
Analysis Method: 8260D	Date Collected: 03/14/2022 10:15
Sample wt/vol: 5(mL)	Date Analyzed: 03/21/2022 13:44
Soil Aliquot Vol:	Dilution Factor: 1
Soil Extract Vol.:	GC Column: DB-624 ID: 0.18(mm)
% Moisture:	Level: (low/med) Low
Analysis Batch No.: 834599	Units: ug/L

CAS NO.	COMPOUND NAME	RESULT	Q	RL	MDL
71-55-6	1,1,1-Trichloroethane	19		1.0	0.24
79-34-5	1,1,2,2-Tetrachloroethane	0.37	U	1.0	0.37
79-00-5	1,1,2-Trichloroethane	0.20	U	1.0	0.20
75-34-3	1,1-Dichloroethane	0.26	U	1.0	0.26
75-35-4	1,1-Dichloroethene	3.2		1.0	0.26
120-82-1	1,2,4-Trichlorobenzene	0.37	U	1.0	0.37
96-12-8	1,2-Dibromo-3-Chloropropane	0.38	U	1.0	0.38
106-93-4	1,2-Dibromoethane	0.50	U	1.0	0.50
95-50-1	1,2-Dichlorobenzene	0.21	U	1.0	0.21
107-06-2	1,2-Dichloroethane	0.43	U	1.0	0.43
78-87-5	1,2-Dichloropropane	0.35	U	1.0	0.35
541-73-1	1,3-Dichlorobenzene	0.34	U	1.0	0.34
106-46-7	1,4-Dichlorobenzene	0.33	U	1.0	0.33
78-93-3	2-Butanone (MEK)	1.9	U	5.0	1.9
591-78-6	2-Hexanone	1.1	U	5.0	1.1
108-10-1	4-Methyl-2-pentanone (MIBK)	1.3	U	5.0	1.3
67-64-1	Acetone	4.4	U	5.0	4.4
71-43-2	Benzene	0.20	U	1.0	0.20
75-25-2	Bromoform	0.54	U	1.0	0.54
74-83-9	Bromomethane	0.55	U	1.0	0.55
75-15-0	Carbon disulfide	0.82	U	1.0	0.82
56-23-5	Carbon tetrachloride	0.21	U	1.0	0.21
108-90-7	Chlorobenzene	0.38	U	1.0	0.38
74-97-5	Chlorobromomethane	0.41	U	1.0	0.41
124-48-1	Chlorodibromomethane	0.28	U	1.0	0.28
75-00-3	Chloroethane	0.32	U	1.0	0.32
67-66-3	Chloroform	0.33	U	1.0	0.33
74-87-3	Chloromethane	0.40	U	1.0	0.40
156-59-2	cis-1,2-Dichloroethene	0.66	J	1.0	0.22
10061-01-5	cis-1,3-Dichloropropene	0.22	U	1.0	0.22
75-27-4	Dichlorobromomethane	0.34	U	1.0	0.34
100-41-4	Ethylbenzene	0.30	U	1.0	0.30
75-09-2	Methylene Chloride	0.32	U	1.0	0.32
100-42-5	Styrene	0.42	U	1.0	0.42
127-18-4	Tetrachloroethene	0.88	J	1.0	0.25
108-88-3	Toluene	0.38	U	1.0	0.38

Lab Name: Job No.: 460-254696-1			
SDG No.:			
Client Sample ID: RW-1	Lab Sample ID: 460-254690	5-2	
Matrix: Water	Lab File ID: T63050.D		
Analysis Method: 8260D	Date Collected: 03/14/202	22 10:15	
Sample wt/vol: 5(mL)	Date Analyzed: 03/21/2022	2 13:44	
Soil Aliquot Vol:	Dilution Factor: 1		
Soil Extract Vol.:	GC Column: DB-624	ID: 0.18 (mm)	
% Moisture:	Level: (low/med) Low		
Analysis Batch No.: 834599	Units: ua/L		

CAS NO.	COMPOUND NAME	RESULT	Q	RL	MDL
156-60-5	trans-1,2-Dichloroethene	0.24	U	1.0	0.24
10061-02-6	trans-1,3-Dichloropropene	0.22	U	1.0	0.22
79-01-6	Trichloroethene	34		1.0	0.31
75-01-4	Vinyl chloride	0.17	U	1.0	0.17
1330-20-7	Xylenes, Total	0.65	U	2.0	0.65

CAS NO.	SURROGATE	%REC	Q	LIMITS
17060-07-0	1,2-Dichloroethane-d4 (Surr)	109		75-123
460-00-4	4-Bromofluorobenzene	105		76-120
1868-53-7	Dibromofluoromethane (Surr)	107		77-124
2037-26-5	Toluene-d8 (Surr)	96		80-120

Lab Name:	Job No.: 460-254696-1
SDG No.:	
Client Sample ID: MW-8	Lab Sample ID: 460-254696-3
Matrix: Water	Lab File ID: T63049.D
Analysis Method: 8260D	Date Collected: 03/14/2022 10:30
Sample wt/vol: 5(mL)	Date Analyzed: 03/21/2022 13:23
Soil Aliquot Vol:	Dilution Factor: 1
Soil Extract Vol.:	GC Column: DB-624 ID: 0.18(mm)
% Moisture:	Level: (low/med) Low

Analysis Batch No.: 834599 Units: ug/L

CAS NO.	COMPOUND NAME	RESULT	Q	RL	MDL
71-55-6	1,1,1-Trichloroethane	17		1.0	0.24
79-34-5	1,1,2,2-Tetrachloroethane	0.37	Ū	1.0	0.37
79-00-5	1,1,2-Trichloroethane	0.20	U	1.0	0.20
75-34-3	1,1-Dichloroethane	0.26	U	1.0	0.26
75-35-4	1,1-Dichloroethene	2.7		1.0	0.26
120-82-1	1,2,4-Trichlorobenzene	0.37	U	1.0	0.37
96-12-8	1,2-Dibromo-3-Chloropropane	0.38	U	1.0	0.38
106-93-4	1,2-Dibromoethane	0.50	U	1.0	0.50
95-50-1	1,2-Dichlorobenzene	0.21	U	1.0	0.21
107-06-2	1,2-Dichloroethane	0.43	U	1.0	0.43
78-87-5	1,2-Dichloropropane	0.35	Ū	1.0	0.35
541-73-1	1,3-Dichlorobenzene	0.34	Ū	1.0	0.34
106-46-7	1,4-Dichlorobenzene	0.33	U	1.0	0.33
78-93-3	2-Butanone (MEK)	1.9	U	5.0	1.9
591-78-6	2-Hexanone	1.1	U	5.0	1.1
108-10-1	4-Methyl-2-pentanone (MIBK)	1.3	U	5.0	1.3
67-64-1	Acetone	4.4	U	5.0	4.4
71-43-2	Benzene	0.20	U	1.0	0.20
75-25-2	Bromoform	0.54	U	1.0	0.54
74-83-9	Bromomethane	0.55	U	1.0	0.55
75-15-0	Carbon disulfide	0.82	U	1.0	0.82
56-23-5	Carbon tetrachloride	0.21	U	1.0	0.21
108-90-7	Chlorobenzene	0.38	U	1.0	0.38
74-97-5	Chlorobromomethane	0.41	U	1.0	0.41
124-48-1	Chlorodibromomethane	0.28	U	1.0	0.28
75-00-3	Chloroethane	0.32	U	1.0	0.32
67-66-3	Chloroform	0.33	U	1.0	0.33
74-87-3	Chloromethane	0.40	U	1.0	0.40
156-59-2	cis-1,2-Dichloroethene	0.74	J	1.0	0.22
10061-01-5	cis-1,3-Dichloropropene	0.22	U	1.0	0.22
75-27-4	Dichlorobromomethane	0.34	Ū	1.0	0.34
100-41-4	Ethylbenzene	0.30	Ū	1.0	0.30
75-09-2	Methylene Chloride	0.32	Ū	1.0	0.32
100-42-5	Styrene	0.42	Ū	1.0	0.42
127-18-4	Tetrachloroethene	0.79	J	1.0	0.25
108-88-3	Toluene	0.38	U	1.0	0.38

Job No.: 460-254696-1 SDG No.: Client Sample ID: MW-8 Lab Sample ID: 460-254696-3 Matrix: Water Lab File ID: T63049.D Analysis Method: 8260D Date Collected: 03/14/2022 10:30 Sample wt/vol: 5(mL) Date Analyzed: 03/21/2022 13:23

Soil Aliquot Vol: Dilution Factor: 1

Soil Extract Vol.: _____ GC Column: <u>DB-624</u> ID: <u>0.18 (mm)</u>

% Moisture: ____ Level: (low/med) Low

Analysis Batch No.: 834599 Units: ug/L

CAS NO.	COMPOUND NAME	RESULT	Q	RL	MDL
156-60-5	trans-1,2-Dichloroethene	0.24	U	1.0	0.24
10061-02-6	trans-1,3-Dichloropropene	0.22	U	1.0	0.22
79-01-6	Trichloroethene	28		1.0	0.31
75-01-4	Vinyl chloride	0.17	U	1.0	0.17
1330-20-7	Xylenes, Total	0.65	U	2.0	0.65

CAS NO.	SURROGATE	%REC	Q	LIMITS
17060-07-0	1,2-Dichloroethane-d4 (Surr)	107		75-123
460-00-4	4-Bromofluorobenzene	104		76-120
1868-53-7	Dibromofluoromethane (Surr)	108		77-124
2037-26-5	Toluene-d8 (Surr)	97		80-120

Lab Name:

Lab Name:	Job No.: 460-254696-1		
SDG No.:			
Client Sample ID: MW-2	Lab Sample ID: 460-254696-4		
Matrix: Water	Lab File ID: T63051.D		
Analysis Method: 8260D	Date Collected: 03/15/2022 08:03		
Sample wt/vol: 5(mL)	Date Analyzed: 03/21/2022 14:05		
Soil Aliquot Vol:	Dilution Factor: 1		
Soil Extract Vol.:	GC Column: DB-624 ID: 0.18 (mm)		
% Moisture:	Level: (low/med) Low		
Analysis Batch No.: 834599	Units: ug/L		

CAS NO.	COMPOUND NAME	RESULT	Q	RL	MDL
71-55-6	1,1,1-Trichloroethane	0.24	U	1.0	0.24
79-34-5	1,1,2,2-Tetrachloroethane	0.37	U	1.0	0.37
79-00-5	1,1,2-Trichloroethane	0.20	U	1.0	0.20
75-34-3	1,1-Dichloroethane	0.26	U	1.0	0.26
75-35-4	1,1-Dichloroethene	0.26	U	1.0	0.26
120-82-1	1,2,4-Trichlorobenzene	0.37	U	1.0	0.37
96-12-8	1,2-Dibromo-3-Chloropropane	0.38	U	1.0	0.38
106-93-4	1,2-Dibromoethane	0.50	U	1.0	0.50
95-50-1	1,2-Dichlorobenzene	0.21	U	1.0	0.21
107-06-2	1,2-Dichloroethane	0.43	U	1.0	0.43
78-87-5	1,2-Dichloropropane	0.35	U	1.0	0.35
541-73-1	1,3-Dichlorobenzene	0.34	U	1.0	0.34
106-46-7	1,4-Dichlorobenzene	0.33	U	1.0	0.33
78-93-3	2-Butanone (MEK)	1.9	U	5.0	1.9
591-78-6	2-Hexanone	1.1	U	5.0	1.1
108-10-1	4-Methyl-2-pentanone (MIBK)	1.3	U	5.0	1.3
67-64-1	Acetone	4.4	U	5.0	4.4
71-43-2	Benzene	0.20	U	1.0	0.20
75-25-2	Bromoform	0.54	U	1.0	0.54
74-83-9	Bromomethane	0.55	U	1.0	0.55
75-15-0	Carbon disulfide	0.82	U	1.0	0.82
56-23-5	Carbon tetrachloride	0.21	U	1.0	0.21
108-90-7	Chlorobenzene	0.38	U	1.0	0.38
74-97-5	Chlorobromomethane	0.41	U	1.0	0.41
124-48-1	Chlorodibromomethane	0.28	U	1.0	0.28
75-00-3	Chloroethane	0.32	U	1.0	0.32
67-66-3	Chloroform	0.37	J	1.0	0.33
74-87-3	Chloromethane	0.40	U	1.0	0.40
156-59-2	cis-1,2-Dichloroethene	0.22	U	1.0	0.22
10061-01-5	cis-1,3-Dichloropropene	0.22	U	1.0	0.22
75-27-4	Dichlorobromomethane	0.34	U	1.0	0.34
100-41-4	Ethylbenzene	0.30	U	1.0	0.30
75-09-2	Methylene Chloride	0.32	U	1.0	0.32
100-42-5	Styrene	0.42	U	1.0	0.42
127-18-4	Tetrachloroethene	0.25	U	1.0	0.25
108-88-3	Toluene	0.38	U	1.0	0.38

Lab Name:	Job No.: 460-254696-1	
SDG No.:		
Client Sample ID: MW-2	Lab Sample ID: 460-2546	96-4
Matrix: Water	Lab File ID: T63051.D	
Analysis Method: 8260D	Date Collected: 03/15/2	022 08:03
Sample wt/vol: 5(mL)	Date Analyzed: 03/21/20	22 14:05
Soil Aliquot Vol:	Dilution Factor: 1	
Soil Extract Vol.:	GC Column: DB-624	ID: 0.18(mm)
% Moisture:	Level: (low/med) Low	
Analysis Batch No.: 834599	Units: ug/L	

CAS NO.	COMPOUND NAME	RESULT	Q	RL	MDL
156-60-5	trans-1,2-Dichloroethene	0.24	U	1.0	0.24
10061-02-6	trans-1,3-Dichloropropene	0.22	U	1.0	0.22
79-01-6	Trichloroethene	0.47	J	1.0	0.31
75-01-4	Vinyl chloride	0.17	U	1.0	0.17
1330-20-7	Xylenes, Total	0.65	U	2.0	0.65

CAS NO.	SURROGATE	%REC	Q	LIMITS
17060-07-0	1,2-Dichloroethane-d4 (Surr)	109		75-123
460-00-4	4-Bromofluorobenzene	100		76-120
1868-53-7	Dibromofluoromethane (Surr)	106		77-124
2037-26-5	Toluene-d8 (Surr)	94		80-120

Lab Name:	Job No.: 460-254696-1	Job No.: 460-254696-1		
SDG No.:				
Client Sample ID: MW-2D	Lab Sample ID: 460-2546	96-5		
Matrix: Water	x: Water Lab File ID: T63052.D			
Analysis Method: 8260D	Date Collected: 03/15/2	022 08:13		
Sample wt/vol: 5(mL)	Date Analyzed: 03/21/20	22 14:26		
Soil Aliquot Vol:	Dilution Factor: 1			
Soil Extract Vol.:	GC Column: DB-624	ID: 0.18(mm)		
% Moisture:	Level: (low/med) Low			
Analysis Batch No · 83/1599	IInits. na/L			

CAS NO.	COMPOUND NAME	RESULT	Q	RL	MDL
71-55-6	1,1,1-Trichloroethane	0.24	Ū	1.0	0.24
79-34-5	1,1,2,2-Tetrachloroethane	0.37	U	1.0	0.37
79-00-5	1,1,2-Trichloroethane	0.20	U	1.0	0.20
75-34-3	1,1-Dichloroethane	0.26	U	1.0	0.26
75-35-4	1,1-Dichloroethene	0.26	U	1.0	0.26
120-82-1	1,2,4-Trichlorobenzene	0.37	U	1.0	0.37
96-12-8	1,2-Dibromo-3-Chloropropane	0.38	U	1.0	0.38
106-93-4	1,2-Dibromoethane	0.50	U	1.0	0.50
95-50-1	1,2-Dichlorobenzene	0.21	U	1.0	0.21
107-06-2	1,2-Dichloroethane	0.43	U	1.0	0.43
78-87-5	1,2-Dichloropropane	0.35	U	1.0	0.35
541-73-1	1,3-Dichlorobenzene	0.34	U	1.0	0.34
106-46-7	1,4-Dichlorobenzene	0.33	U	1.0	0.33
78-93-3	2-Butanone (MEK)	1.9	U	5.0	1.9
591-78-6	2-Hexanone	1.1	U	5.0	1.1
108-10-1	4-Methyl-2-pentanone (MIBK)	1.3	U	5.0	1.3
67-64-1	Acetone	4.4	U	5.0	4.4
71-43-2	Benzene	0.20	U	1.0	0.20
75-25-2	Bromoform	0.54	U	1.0	0.54
74-83-9	Bromomethane	0.55	U	1.0	0.55
75-15-0	Carbon disulfide	0.82	U	1.0	0.82
56-23-5	Carbon tetrachloride	0.21	U	1.0	0.21
108-90-7	Chlorobenzene	0.38	U	1.0	0.38
74-97-5	Chlorobromomethane	0.41	U	1.0	0.41
124-48-1	Chlorodibromomethane	0.28	U	1.0	0.28
75-00-3	Chloroethane	0.32	U	1.0	0.32
67-66-3	Chloroform	0.33	J	1.0	0.33
74-87-3	Chloromethane	0.40	U	1.0	0.40
156-59-2	cis-1,2-Dichloroethene	0.22	U	1.0	0.22
10061-01-5	cis-1,3-Dichloropropene	0.22	U	1.0	0.22
75-27-4	Dichlorobromomethane	0.34	Ū	1.0	0.34
100-41-4	Ethylbenzene	0.30	Ū	1.0	0.30
75-09-2	Methylene Chloride	0.32	Ū	1.0	0.32
100-42-5	Styrene	0.42	Ū	1.0	0.42
127-18-4	Tetrachloroethene	0.25	Ū	1.0	0.25
108-88-3	Toluene	0.38	U	1.0	0.38

Lab Name:	Job No.: 460-254696-1	
SDG No.:		
Client Sample ID: MW-2D	Lab Sample ID: 460-2546	96-5
Matrix: Water	Lab File ID: T63052.D	
Analysis Method: 8260D	Date Collected: 03/15/2	022 08:13
Sample wt/vol: 5(mL)	Date Analyzed: 03/21/20	22 14:26
Soil Aliquot Vol:	Dilution Factor: 1	
Soil Extract Vol.:	GC Column: DB-624	ID: 0.18(mm)
% Moisture:	Level: (low/med) Low	
Analysis Ratch No • 83/500	Unite: ua/I	

CAS NO.	COMPOUND NAME	RESULT	Q	RL	MDL
156-60-5	trans-1,2-Dichloroethene	0.24	U	1.0	0.24
10061-02-6	trans-1,3-Dichloropropene	0.22	U	1.0	0.22
79-01-6	Trichloroethene	0.34	J	1.0	0.31
75-01-4	Vinyl chloride	0.17	U	1.0	0.17
1330-20-7	Xylenes, Total	0.65	U	2.0	0.65

CAS NO.	SURROGATE	%REC	Q	LIMITS
17060-07-0	1,2-Dichloroethane-d4 (Surr)	106		75-123
460-00-4	4-Bromofluorobenzene	102		76-120
1868-53-7	Dibromofluoromethane (Surr)	107		77-124
2037-26-5	Toluene-d8 (Surr)	95		80-120

Lab Name:	Job No.: 460-254696-1		
SDG No.:			
Client Sample ID: MW-3	Lab Sample ID: 460-254696-6		
Matrix: Water	Lab File ID: T63053.D		
Analysis Method: 8260D	Date Collected: 03/15/2022 09:32		
Sample wt/vol: 5(mL)	Date Analyzed: 03/21/2022 14:47		
Soil Aliquot Vol:	Dilution Factor: 1		
Soil Extract Vol.:	GC Column: DB-624 ID: 0.18(mm)		
% Moisture:	Level: (low/med) Low		
Analysis Batch No.: 834599	Units: ug/L		

CAS NO.	COMPOUND NAME	RESULT	Q	RL	MDL
71-55-6	1,1,1-Trichloroethane	0.24	Ū	1.0	0.24
79-34-5	1,1,2,2-Tetrachloroethane	0.37	U	1.0	0.37
79-00-5	1,1,2-Trichloroethane	0.20	U	1.0	0.20
75-34-3	1,1-Dichloroethane	0.26	U	1.0	0.26
75-35-4	1,1-Dichloroethene	0.26	U	1.0	0.26
120-82-1	1,2,4-Trichlorobenzene	0.37	U	1.0	0.37
96-12-8	1,2-Dibromo-3-Chloropropane	0.38	U	1.0	0.38
106-93-4	1,2-Dibromoethane	0.50	U	1.0	0.50
95-50-1	1,2-Dichlorobenzene	0.21	U	1.0	0.21
107-06-2	1,2-Dichloroethane	0.43	U	1.0	0.43
78-87-5	1,2-Dichloropropane	0.35	U	1.0	0.35
541-73-1	1,3-Dichlorobenzene	0.34	U	1.0	0.34
106-46-7	1,4-Dichlorobenzene	0.33	U	1.0	0.33
78-93-3	2-Butanone (MEK)	1.9	U	5.0	1.9
591-78-6	2-Hexanone	1.1	U	5.0	1.1
108-10-1	4-Methyl-2-pentanone (MIBK)	1.3	U	5.0	1.3
67-64-1	Acetone	4.4	U	5.0	4.4
71-43-2	Benzene	0.20	U	1.0	0.20
75-25-2	Bromoform	0.54	U	1.0	0.54
74-83-9	Bromomethane	0.55	U	1.0	0.55
75-15-0	Carbon disulfide	0.82	U	1.0	0.82
56-23-5	Carbon tetrachloride	0.21	U	1.0	0.21
108-90-7	Chlorobenzene	0.38	U	1.0	0.38
74-97-5	Chlorobromomethane	0.41	U	1.0	0.41
124-48-1	Chlorodibromomethane	0.28	U	1.0	0.28
75-00-3	Chloroethane	0.32	U	1.0	0.32
67-66-3	Chloroform	0.33	U	1.0	0.33
74-87-3	Chloromethane	0.40	U	1.0	0.40
156-59-2	cis-1,2-Dichloroethene	0.22	U	1.0	0.22
10061-01-5	cis-1,3-Dichloropropene	0.22	U	1.0	0.22
75-27-4	Dichlorobromomethane	0.34	U	1.0	0.34
100-41-4	Ethylbenzene	0.30	U	1.0	0.30
75-09-2	Methylene Chloride	0.32	U	1.0	0.32
100-42-5	Styrene	0.42	U	1.0	0.42
127-18-4	Tetrachloroethene	0.25	U	1.0	0.25
108-88-3	Toluene	0.38	U	1.0	0.38

Lab Name:	Job No.: 460-254696-1			
SDG No.:				
Client Sample ID: MW-3	Lab Sample ID: 460-254696-6			
trix: Water Lab File ID: T63053.D				
Analysis Method: 8260D	Date Collected: 03/15/2022 09:32			
Sample wt/vol: 5(mL)	Date Analyzed: 03/21/2022 14:47			
Soil Aliquot Vol:	Dilution Factor: 1			
Soil Extract Vol.:	GC Column: DB-624 ID: 0.18(mm)			
% Moisture:	Level: (low/med) Low			
Analysis Batch No · 83/599	Ilnits: na/L			

CAS NO.	COMPOUND NAME	RESULT	Q	RL	MDL
156-60-5	trans-1,2-Dichloroethene	0.24	U	1.0	0.24
10061-02-6	trans-1,3-Dichloropropene	0.22	U	1.0	0.22
79-01-6	Trichloroethene	0.62	J	1.0	0.31
75-01-4	Vinyl chloride	0.17	U	1.0	0.17
1330-20-7	Xylenes, Total	0.65	U	2.0	0.65

CAS NO.	SURROGATE	%REC	Q	LIMITS
17060-07-0	1,2-Dichloroethane-d4 (Surr)	108		75-123
460-00-4	4-Bromofluorobenzene	103		76-120
1868-53-7	Dibromofluoromethane (Surr)	105		77-124
2037-26-5	Toluene-d8 (Surr)	96		80-120

non responsive based on revised scope					
Lab Name:	Job No.: 460-254696-1				
SDG No.:					
Client Sample ID: MW-4	Lab Sample ID: 460-2546	96-7			
Matrix: Water	Lab File ID: T63054.D				
Analysis Method: 8260D	Date Collected: 03/15/2	022 11:26			
Sample wt/vol: 5(mL)	Date Analyzed: 03/21/20	2022 15:09			
Soil Aliquot Vol:	Dilution Factor: 1				
Soil Extract Vol.:	GC Column: DB-624	ID: 0.18(mm)			
% Moisture:	Level: (low/med) Low				
Analysis Ratch No · 83/1599	Unite ua/L	·			

CAS NO.	COMPOUND NAME	RESULT	Q	RL	MDL
71-55-6	1,1,1-Trichloroethane	0.24	Ŭ	1.0	0.24
79-34-5	1,1,2,2-Tetrachloroethane	0.37	U	1.0	0.37
79-00-5	1,1,2-Trichloroethane	0.20	U	1.0	0.20
75-34-3	1,1-Dichloroethane	0.26	U	1.0	0.26
75-35-4	1,1-Dichloroethene	0.26	U	1.0	0.26
120-82-1	1,2,4-Trichlorobenzene	0.37	U	1.0	0.37
96-12-8	1,2-Dibromo-3-Chloropropane	0.38	U	1.0	0.38
106-93-4	1,2-Dibromoethane	0.50	U	1.0	0.50
95-50-1	1,2-Dichlorobenzene	0.21	U	1.0	0.21
107-06-2	1,2-Dichloroethane	0.43	U	1.0	0.43
78-87-5	1,2-Dichloropropane	0.35	U	1.0	0.35
541-73-1	1,3-Dichlorobenzene	0.34	U	1.0	0.34
106-46-7	1,4-Dichlorobenzene	0.33	U	1.0	0.33
78-93-3	2-Butanone (MEK)	1.9	U	5.0	1.9
591-78-6	2-Hexanone	1.1	U	5.0	1.1
108-10-1	4-Methyl-2-pentanone (MIBK)	1.3	U	5.0	1.3
67-64-1	Acetone	4.4	U	5.0	4.4
71-43-2	Benzene	0.20	U	1.0	0.20
75-25-2	Bromoform	0.54	U	1.0	0.54
74-83-9	Bromomethane	0.55	U	1.0	0.55
75-15-0	Carbon disulfide	0.82	U	1.0	0.82
56-23-5	Carbon tetrachloride	0.21	U	1.0	0.21
108-90-7	Chlorobenzene	0.38	U	1.0	0.38
74-97-5	Chlorobromomethane	0.41	U	1.0	0.41
124-48-1	Chlorodibromomethane	0.28	U	1.0	0.28
75-00-3	Chloroethane	0.32	U	1.0	0.32
67-66-3	Chloroform	0.33	U	1.0	0.33
74-87-3	Chloromethane	0.40	U	1.0	0.40
156-59-2	cis-1,2-Dichloroethene	0.22	U	1.0	0.22
10061-01-5	cis-1,3-Dichloropropene	0.22	U	1.0	0.22
75-27-4	Dichlorobromomethane	0.34	U	1.0	0.34
100-41-4	Ethylbenzene	0.30	U	1.0	0.30
75-09-2	Methylene Chloride	0.32	U	1.0	0.32
100-42-5	Styrene	0.42	U	1.0	0.42
127-18-4	Tetrachloroethene	0.25	U	1.0	0.25
108-88-3	Toluene	0.38	U	1.0	0.38

Lab Name:	Job No.: 460-254696-1	
SDG No.:		
Client Sample ID: MW-4	Lab Sample ID: 460-25469	6-7
Matrix: Water	Lab File ID: T63054.D	
Analysis Method: 8260D	Date Collected: 03/15/2022 11:26	
Sample wt/vol: 5(mL)	Date Analyzed: 03/21/202	2 15:09
Soil Aliquot Vol:	Dilution Factor: 1	
Soil Extract Vol.:	GC Column: DB-624	ID: 0.18(mm)
% Moisture:	Level: (low/med) Low	
Analysis Batch No · 83/1599	IInits: ug/L	

CAS NO.	COMPOUND NAME	RESULT	Q	RL	MDL
156-60-5	trans-1,2-Dichloroethene	0.24	U	1.0	0.24
10061-02-6	trans-1,3-Dichloropropene	0.22	U	1.0	0.22
79-01-6	Trichloroethene	0.71	J	1.0	0.31
75-01-4	Vinyl chloride	0.17	U	1.0	0.17
1330-20-7	Xylenes, Total	0.65	U	2.0	0.65

CAS NO.	SURROGATE	%REC	Q	LIMITS
17060-07-0	1,2-Dichloroethane-d4 (Surr)	108		75-123
460-00-4	4-Bromofluorobenzene	103		76-120
1868-53-7	Dibromofluoromethane (Surr)	107		77-124
2037-26-5	Toluene-d8 (Surr)	96		80-120

non responsive based on revised scope		
Lab Name:	Job No.: 460-254696-1	
SDG No.:		
Client Sample ID: MW-5A	Lab Sample ID: 460-254696-8	
Matrix: Water	Lab File ID: T63055.D	
Analysis Method: 8260D	Date Collected: 03/15/2022 12:30	
Sample wt/vol: 5(mL)	Date Analyzed: 03/21/2022 15:30	
Soil Aliquot Vol:	Dilution Factor: 1	
Soil Extract Vol.:	GC Column: DB-624 ID: 0.18(mm)	
% Moisture:	Level: (low/med) Low	

Analysis Batch No.: 834599 Units: ug/L

CAS NO.	COMPOUND NAME	RESULT	Q	RL	MDL
71-55-6	1,1,1-Trichloroethane	4.3		1.0	0.24
79-34-5	1,1,2,2-Tetrachloroethane	0.37	U	1.0	0.37
79-00-5	1,1,2-Trichloroethane	0.20	U	1.0	0.20
75-34-3	1,1-Dichloroethane	0.29	J	1.0	0.26
75-35-4	1,1-Dichloroethene	0.49	J	1.0	0.26
120-82-1	1,2,4-Trichlorobenzene	0.37	U	1.0	0.37
96-12-8	1,2-Dibromo-3-Chloropropane	0.38	U	1.0	0.38
106-93-4	1,2-Dibromoethane	0.50	U	1.0	0.50
95-50-1	1,2-Dichlorobenzene	0.21	U	1.0	0.21
107-06-2	1,2-Dichloroethane	0.43	U	1.0	0.43
78-87-5	1,2-Dichloropropane	0.35	U	1.0	0.35
541-73-1	1,3-Dichlorobenzene	0.34	U	1.0	0.34
106-46-7	1,4-Dichlorobenzene	0.33	U	1.0	0.33
78-93-3	2-Butanone (MEK)	1.9	U	5.0	1.9
591-78-6	2-Hexanone	1.1	U	5.0	1.1
108-10-1	4-Methyl-2-pentanone (MIBK)	1.3	U	5.0	1.3
67-64-1	Acetone	4.4	U	5.0	4.4
71-43-2	Benzene	0.20	U	1.0	0.20
75-25-2	Bromoform	0.54	U	1.0	0.54
74-83-9	Bromomethane	0.55	U	1.0	0.55
75-15-0	Carbon disulfide	0.82	U	1.0	0.82
56-23-5	Carbon tetrachloride	0.21	U	1.0	0.21
108-90-7	Chlorobenzene	0.73	J	1.0	0.38
74-97-5	Chlorobromomethane	0.41	U	1.0	0.41
124-48-1	Chlorodibromomethane	0.28	U	1.0	0.28
75-00-3	Chloroethane	0.32	U	1.0	0.32
67-66-3	Chloroform	0.33	U	1.0	0.33
74-87-3	Chloromethane	0.40	U	1.0	0.40
156-59-2	cis-1,2-Dichloroethene	0.86	J	1.0	0.22
10061-01-5	cis-1,3-Dichloropropene	0.22	U	1.0	0.22
75-27-4	Dichlorobromomethane	0.34	U	1.0	0.34
100-41-4	Ethylbenzene	0.30	U	1.0	0.30
75-09-2	Methylene Chloride	0.32	U	1.0	0.32
100-42-5	Styrene	0.42	U	1.0	0.42
127-18-4	Tetrachloroethene	0.25	U	1.0	0.25
108-88-3	Toluene	0.38	U	1.0	0.38

Lab Name:	Job No.: 460-254696-1		
SDG No.:			
Client Sample ID: MW-5A	Lab Sample ID: 460-254696-8		
Matrix: Water	er Lab File ID: T63055.D		
Analysis Method: 8260D	Date Collected: 03/15/2022 12:30		
Sample wt/vol: 5(mL)	Date Analyzed: 03/21/2022 15:30		
Soil Aliquot Vol:	Dilution Factor: 1		
Soil Extract Vol.:	GC Column: DB-624 ID: 0.18(mm)		
% Moisture:	Level: (low/med) Low		
Analysis Batch No.: 834599	Units: ug/L		

CAS NO.	COMPOUND NAME	RESULT	Q	RL	MDL
156-60-5	trans-1,2-Dichloroethene	0.24	U	1.0	0.24
10061-02-6	trans-1,3-Dichloropropene	0.22	U	1.0	0.22
79-01-6	Trichloroethene	3.1		1.0	0.31
75-01-4	Vinyl chloride	0.17	U	1.0	0.17
1330-20-7	Xylenes, Total	0.65	U	2.0	0.65

CAS NO.	SURROGATE	%REC	Q	LIMITS
17060-07-0	1,2-Dichloroethane-d4 (Surr)	106		75-123
460-00-4	4-Bromofluorobenzene	102		76-120
1868-53-7	Dibromofluoromethane (Surr)	105		77-124
2037-26-5	Toluene-d8 (Surr)	95		80-120

Lab Name:	Job No.: 460-254696-1
SDG No.:	
Client Sample ID: MW-6	Lab Sample ID: 460-254696-9
Matrix: Water	Lab File ID: T63056.D
Analysis Method: 8260D	Date Collected: 03/15/2022 14:20
Sample wt/vol: 5(mL)	Date Analyzed: 03/21/2022 15:51
Soil Aliquot Vol:	Dilution Factor: 1
Soil Extract Vol.:	GC Column: DB-624 ID: 0.18(mm)
% Moisture:	Level: (low/med) Low
Analysis Batch No.: 834599	Units: ug/L

CAS NO.	COMPOUND NAME	RESULT	Q	RL	MDL
71-55-6	1,1,1-Trichloroethane	0.24	Ū	1.0	0.24
79-34-5	1,1,2,2-Tetrachloroethane	0.37	U	1.0	0.37
79-00-5	1,1,2-Trichloroethane	0.20	U	1.0	0.20
75-34-3	1,1-Dichloroethane	0.26	U	1.0	0.26
75-35-4	1,1-Dichloroethene	0.26	U	1.0	0.26
120-82-1	1,2,4-Trichlorobenzene	0.37	U	1.0	0.37
96-12-8	1,2-Dibromo-3-Chloropropane	0.38	U	1.0	0.38
106-93-4	1,2-Dibromoethane	0.50	U	1.0	0.50
95-50-1	1,2-Dichlorobenzene	0.21	U	1.0	0.21
107-06-2	1,2-Dichloroethane	0.43	U	1.0	0.43
78-87-5	1,2-Dichloropropane	0.35	U	1.0	0.35
541-73-1	1,3-Dichlorobenzene	0.34	U	1.0	0.34
106-46-7	1,4-Dichlorobenzene	0.33	U	1.0	0.33
78-93-3	2-Butanone (MEK)	1.9	U	5.0	1.9
591-78-6	2-Hexanone	1.1	U	5.0	1.1
108-10-1	4-Methyl-2-pentanone (MIBK)	1.3	U	5.0	1.3
67-64-1	Acetone	4.4	U	5.0	4.4
71-43-2	Benzene	0.20	U	1.0	0.20
75-25-2	Bromoform	0.54	U	1.0	0.54
74-83-9	Bromomethane	0.55	U	1.0	0.55
75-15-0	Carbon disulfide	0.82	U	1.0	0.82
56-23-5	Carbon tetrachloride	0.21	U	1.0	0.21
108-90-7	Chlorobenzene	0.38	U	1.0	0.38
74-97-5	Chlorobromomethane	0.41	U	1.0	0.41
124-48-1	Chlorodibromomethane	0.28	U	1.0	0.28
75-00-3	Chloroethane	0.32	U	1.0	0.32
67-66-3	Chloroform	0.33	U	1.0	0.33
74-87-3	Chloromethane	0.40	U	1.0	0.40
156-59-2	cis-1,2-Dichloroethene	0.39	J	1.0	0.22
10061-01-5	cis-1,3-Dichloropropene	0.22	U	1.0	0.22
75-27-4	Dichlorobromomethane	0.34	U	1.0	0.34
100-41-4	Ethylbenzene	0.30	Ū	1.0	0.30
75-09-2	Methylene Chloride	0.32	Ū	1.0	0.32
100-42-5	Styrene	0.42	Ū	1.0	0.42
127-18-4	Tetrachloroethene	0.25	Ū	1.0	0.25
108-88-3	Toluene	0.38	Ū	1.0	0.38
-	•	i			

Lab Name:	Job No.: 460-254696-1	
SDG No.:		
Client Sample ID: MW-6	Lab Sample ID: 460-2546	96-9
Matrix: Water	Lab File ID: T63056.D	
Analysis Method: 8260D	Date Collected: 03/15/2	022 14:20
Sample wt/vol: 5(mL)	Date Analyzed: 03/21/20	22 15:51
Soil Aliquot Vol:	Dilution Factor: 1	
Soil Extract Vol.:	GC Column: DB-624	ID: 0.18(mm)
% Moisture:	Level: (low/med) Low	
Analysis Ratch No • 93/500	Unite: na/L	

CAS NO.	COMPOUND NAME	RESULT	Q	RL	MDL
156-60-5	trans-1,2-Dichloroethene	0.24	U	1.0	0.24
10061-02-6	trans-1,3-Dichloropropene	0.22	U	1.0	0.22
79-01-6	Trichloroethene	0.31	U	1.0	0.31
75-01-4	Vinyl chloride	0.17	U	1.0	0.17
1330-20-7	Xylenes, Total	0.65	U	2.0	0.65

CAS NO.	SURROGATE	%REC	Q	LIMITS
17060-07-0	1,2-Dichloroethane-d4 (Surr)	106		75-123
460-00-4	4-Bromofluorobenzene	101		76-120
1868-53-7	Dibromofluoromethane (Surr)	104		77-124
2037-26-5	Toluene-d8 (Surr)	95		80-120

Lab Name:	Job No.: 460-254696-1		
SDG No.:			
Client Sample ID: MW-7	Lab Sample ID: 460-254696-10		
Matrix: Water	Lab File ID: T63057.D		
Analysis Method: 8260D	Date Collected: 03/15/2022 15:28		
Sample wt/vol: 5(mL)	Date Analyzed: 03/21/2022 16:13		
Soil Aliquot Vol:	Dilution Factor: 1		
Soil Extract Vol.:	GC Column: DB-624 ID: 0.18(mm)		
% Moisture:	Level: (low/med) Low		
Analysis Batch No.: 834599	Units: ug/L		

CAS NO.	COMPOUND NAME	RESULT	Q	RL	MDL
71-55-6	1,1,1-Trichloroethane	16		1.0	0.24
79-34-5	1,1,2,2-Tetrachloroethane	0.37	U	1.0	0.37
79-00-5	1,1,2-Trichloroethane	0.20	U	1.0	0.20
75-34-3	1,1-Dichloroethane	0.34	J	1.0	0.26
75-35-4	1,1-Dichloroethene	1.7		1.0	0.26
120-82-1	1,2,4-Trichlorobenzene	0.37	U	1.0	0.37
96-12-8	1,2-Dibromo-3-Chloropropane	0.38	U	1.0	0.38
106-93-4	1,2-Dibromoethane	0.50	U	1.0	0.50
95-50-1	1,2-Dichlorobenzene	0.21	U	1.0	0.21
107-06-2	1,2-Dichloroethane	0.43	U	1.0	0.43
78-87-5	1,2-Dichloropropane	0.35	U	1.0	0.35
541-73-1	1,3-Dichlorobenzene	0.34	U	1.0	0.34
106-46-7	1,4-Dichlorobenzene	0.33	U	1.0	0.33
78-93-3	2-Butanone (MEK)	1.9	U	5.0	1.9
591-78-6	2-Hexanone	1.1	U	5.0	1.1
108-10-1	4-Methyl-2-pentanone (MIBK)	1.3	U	5.0	1.3
67-64-1	Acetone	4.4	U	5.0	4.4
71-43-2	Benzene	0.20	U	1.0	0.20
75-25-2	Bromoform	0.54	U	1.0	0.54
74-83-9	Bromomethane	0.55	U	1.0	0.55
75-15-0	Carbon disulfide	0.82	U	1.0	0.82
56-23-5	Carbon tetrachloride	0.21	U	1.0	0.21
108-90-7	Chlorobenzene	0.68	J	1.0	0.38
74-97-5	Chlorobromomethane	0.41	U	1.0	0.41
124-48-1	Chlorodibromomethane	0.28	U	1.0	0.28
75-00-3	Chloroethane	0.32	U	1.0	0.32
67-66-3	Chloroform	0.33	U	1.0	0.33
74-87-3	Chloromethane	0.40	U	1.0	0.40
156-59-2	cis-1,2-Dichloroethene	0.80	J	1.0	0.22
10061-01-5	cis-1,3-Dichloropropene	0.22	U	1.0	0.22
75-27-4	Dichlorobromomethane	0.34	U	1.0	0.34
100-41-4	Ethylbenzene	0.30	Ū	1.0	0.30
75-09-2	Methylene Chloride	0.32	Ū	1.0	0.32
100-42-5	Styrene	0.42	Ū	1.0	0.42
127-18-4	Tetrachloroethene	0.55	J	1.0	0.25
108-88-3	Toluene	0.38	U	1.0	0.38

Lab Name:	Job No.: 460-254696-1	Job No.: 460-254696-1		
SDG No.:				
Client Sample ID: MW-7	Lab Sample ID: 460-2546	96-10		
Matrix: Water Lab File ID: T63057.D				
Analysis Method: 8260D Date Collected: 03/15/2022 15:28		022 15:28		
Sample wt/vol: 5(mL)	Date Analyzed: 03/21/20	22 16:13		
Soil Aliquot Vol:	Dilution Factor: 1			
Soil Extract Vol.:	GC Column: DB-624	ID: 0.18(mm)		
% Moisture:	Level: (low/med) Low			
Analysis Patch No • 03/E00	IInita: ua/I	·		

CAS NO.	COMPOUND NAME	RESULT	Q	RL	MDL
156-60-5	trans-1,2-Dichloroethene	0.24	U	1.0	0.24
10061-02-6	trans-1,3-Dichloropropene	0.22	U	1.0	0.22
79-01-6	Trichloroethene	11		1.0	0.31
75-01-4	Vinyl chloride	0.17	U	1.0	0.17
1330-20-7	Xylenes, Total	0.65	U	2.0	0.65

CAS NO.	SURROGATE	%REC	Q	LIMITS
17060-07-0	1,2-Dichloroethane-d4 (Surr)	107		75-123
460-00-4	4-Bromofluorobenzene	102		76-120
1868-53-7	Dibromofluoromethane (Surr)	106		77-124
2037-26-5	Toluene-d8 (Surr)	95		80-120

Lab Name:	Job No.: 460-254696-1				
SDG No.:					
Client Sample ID: EB-01-031522	Lab Sample ID: 460-2546	96-11			
Matrix: Water Lab File ID: T63041.D					
Analysis Method: 8260D	Date Collected: 03/15/2	Date Collected: 03/15/2022 15:57			
Sample wt/vol: 5(mL)	Date Analyzed: 03/21/20	Date Analyzed: 03/21/2022 10:32			
Soil Aliquot Vol:	Dilution Factor: 1				
Soil Extract Vol.:	GC Column: DB-624	ID: 0.18(mm)			
% Moisture:	Level: (low/med) Low				
Analysis Batch No.: 834599	Units: ug/L				

CAS NO.	COMPOUND NAME	RESULT	Q	RL	MDL
71-55-6	1,1,1-Trichloroethane	0.24	U	1.0	0.24
79-34-5	1,1,2,2-Tetrachloroethane	0.37	U	1.0	0.37
79-00-5	1,1,2-Trichloroethane	0.20	Ū	1.0	0.20
75-34-3	1,1-Dichloroethane	0.26	U	1.0	0.26
75-35-4	1,1-Dichloroethene	0.26	U	1.0	0.26
120-82-1	1,2,4-Trichlorobenzene	0.37	U	1.0	0.37
96-12-8	1,2-Dibromo-3-Chloropropane	0.38	U	1.0	0.38
106-93-4	1,2-Dibromoethane	0.50	U	1.0	0.50
95-50-1	1,2-Dichlorobenzene	0.21	U	1.0	0.21
107-06-2	1,2-Dichloroethane	0.43	U	1.0	0.43
78-87-5	1,2-Dichloropropane	0.35	U	1.0	0.35
541-73-1	1,3-Dichlorobenzene	0.34	U	1.0	0.34
106-46-7	1,4-Dichlorobenzene	0.33	U	1.0	0.33
78-93-3	2-Butanone (MEK)	1.9	U	5.0	1.9
591-78-6	2-Hexanone	1.1	U	5.0	1.1
108-10-1	4-Methyl-2-pentanone (MIBK)	1.3	U	5.0	1.3
67-64-1	Acetone	4.4	U	5.0	4.4
71-43-2	Benzene	0.20	U	1.0	0.20
75-25-2	Bromoform	0.54	U	1.0	0.54
74-83-9	Bromomethane	0.55	U	1.0	0.55
75-15-0	Carbon disulfide	0.82	U	1.0	0.82
56-23-5	Carbon tetrachloride	0.21	Ū	1.0	0.21
108-90-7	Chlorobenzene	0.38	Ū	1.0	0.38
74-97-5	Chlorobromomethane	0.41	Ū	1.0	0.41
124-48-1	Chlorodibromomethane	0.28	U	1.0	0.28
75-00-3	Chloroethane	0.32	U	1.0	0.32
67-66-3	Chloroform	0.33	U	1.0	0.33
74-87-3	Chloromethane	0.40	U	1.0	0.40
156-59-2	cis-1,2-Dichloroethene	0.22	U	1.0	0.22
10061-01-5	cis-1,3-Dichloropropene	0.22	U	1.0	0.22
75-27-4	Dichlorobromomethane	0.34	Ū	1.0	0.34
100-41-4	Ethylbenzene	0.30	Ū	1.0	0.30
75-09-2	Methylene Chloride	0.32	Ū	1.0	0.32
100-42-5	Styrene	0.42	Ū	1.0	0.42
127-18-4	Tetrachloroethene	0.25	Ū	1.0	0.25
108-88-3	Toluene	0.38	Ū	1.0	0.38

Lab Name: Job No.: 460-254696-1

SDG No.:

Client Sample ID: EB-01-031522 Lab Sample ID: 460-254696-11

Matrix: Water Lab File ID: T63041.D

Analysis Method: 8260D Date Collected: 03/15/2022 15:57

Sample wt/vol: 5(mL) Date Analyzed: 03/21/2022 10:32

Soil Aliquot Vol: Dilution Factor: 1

Soil Extract Vol.: _____ GC Column: <u>DB-624</u> ID: <u>0.18 (mm)</u>

% Moisture: Level: (low/med) Low

Analysis Batch No.: 834599 Units: ug/L

CAS NO.	COMPOUND NAME	RESULT	Q	RL	MDL
156-60-5	trans-1,2-Dichloroethene	0.24	U	1.0	0.24
10061-02-6	trans-1,3-Dichloropropene	0.22	Ū	1.0	0.22
79-01-6	Trichloroethene	0.31	Ū	1.0	0.31
75-01-4	Vinyl chloride	0.17	Ū	1.0	0.17
1330-20-7	Xylenes, Total	0.65	U	2.0	0.65

CAS NO.	SURROGATE	%REC	Q	LIMITS
17060-07-0	1,2-Dichloroethane-d4 (Surr)	107		75-123
460-00-4	4-Bromofluorobenzene	107		76-120
1868-53-7	Dibromofluoromethane (Surr)	106		77-124
2037-26-5	Toluene-d8 (Surr)	97		80-120

Lab Name:	Job No.: 460-254696-1
SDG No.:	
Client Sample ID: TB-01-031422	Lab Sample ID: 460-254696-12
Matrix: Water	Lab File ID: T63042.D
Analysis Method: 8260D	Date Collected: 03/14/2022 00:00
Sample wt/vol: 5(mL)	Date Analyzed: 03/21/2022 10:54

Soil Aliquot Vol: _____ Dilution Factor: 1

Soil Extract Vol.: _____ GC Column: <u>DB-624</u> ID: <u>0.18 (mm)</u>

% Moisture: Level: (low/med) Low

Analysis Batch No.: 834599 Units: ug/L

CAS NO.	COMPOUND NAME	RESULT	Q	RL	MDL
71-55-6	1,1,1-Trichloroethane	0.24	U	1.0	0.24
79-34-5	1,1,2,2-Tetrachloroethane	0.37	U	1.0	0.37
79-00-5	1,1,2-Trichloroethane	0.20	U	1.0	0.20
75-34-3	1,1-Dichloroethane	0.26	U	1.0	0.26
75-35-4	1,1-Dichloroethene	0.26	U	1.0	0.26
120-82-1	1,2,4-Trichlorobenzene	0.37	U	1.0	0.37
96-12-8	1,2-Dibromo-3-Chloropropane	0.38	U	1.0	0.38
106-93-4	1,2-Dibromoethane	0.50	U	1.0	0.50
95-50-1	1,2-Dichlorobenzene	0.21	U	1.0	0.21
107-06-2	1,2-Dichloroethane	0.43	U	1.0	0.43
78-87-5	1,2-Dichloropropane	0.35	U	1.0	0.35
541-73-1	1,3-Dichlorobenzene	0.34	U	1.0	0.34
106-46-7	1,4-Dichlorobenzene	0.33	U	1.0	0.33
78-93-3	2-Butanone (MEK)	1.9	U	5.0	1.9
591-78-6	2-Hexanone	1.1	U	5.0	1.1
108-10-1	4-Methyl-2-pentanone (MIBK)	1.3	U	5.0	1.3
67-64-1	Acetone	4.4	U	5.0	4.4
71-43-2	Benzene	0.20	U	1.0	0.20
75-25-2	Bromoform	0.54	U	1.0	0.54
74-83-9	Bromomethane	0.55	U	1.0	0.55
75-15-0	Carbon disulfide	0.82	U	1.0	0.82
56-23-5	Carbon tetrachloride	0.21	U	1.0	0.21
108-90-7	Chlorobenzene	0.38	U	1.0	0.38
74-97-5	Chlorobromomethane	0.41	U	1.0	0.41
124-48-1	Chlorodibromomethane	0.28	U	1.0	0.28
75-00-3	Chloroethane	0.32	U	1.0	0.32
67-66-3	Chloroform	0.33	U	1.0	0.33
74-87-3	Chloromethane	0.40	U	1.0	0.40
156-59-2	cis-1,2-Dichloroethene	0.22	U	1.0	0.22
10061-01-5	cis-1,3-Dichloropropene	0.22	U	1.0	0.22
75-27-4	Dichlorobromomethane	0.34	U	1.0	0.34
100-41-4	Ethylbenzene	0.30	U	1.0	0.30
75-09-2	Methylene Chloride	0.32	U	1.0	0.32
100-42-5	Styrene	0.42	U	1.0	0.42
127-18-4	Tetrachloroethene	0.25	U	1.0	0.25
108-88-3	Toluene	0.38	U	1.0	0.38

Lab Name:	Job No.: 460-254696-1					
SDG No.:						
Client Sample ID: TB-01-031422	Lab Sample ID: 460-254696-12					
Matrix: Water	Lab File ID: T63042.D					
Analysis Method: 8260D	Date Collected: 03/14/2022 00:00					
Sample wt/vol: 5(mL)	Date Analyzed: 03/21/2022 10:54					
Soil Aliquot Vol:	Dilution Factor: 1					
Soil Extract Vol.:	GC Column: DB-624 ID: 0.18(mm)					
% Moisture:	Level: (low/med) Low					
Analysis Batch No.: 834599	Units: ug/L					

CAS NO.	COMPOUND NAME	RESULT	Q	RL	MDL
156-60-5	trans-1,2-Dichloroethene	0.24	U	1.0	0.24
10061-02-6	trans-1,3-Dichloropropene	0.22	U	1.0	0.22
79-01-6	Trichloroethene	0.31	U	1.0	0.31
75-01-4	Vinyl chloride	0.17	U	1.0	0.17
1330-20-7	Xylenes, Total	0.65	Ū	2.0	0.65

CAS NO.	SURROGATE	%REC	Q	LIMITS
17060-07-0	1,2-Dichloroethane-d4 (Surr)	109		75-123
460-00-4	4-Bromofluorobenzene	105		76-120
1868-53-7	Dibromofluoromethane (Surr)	112		77-124
2037-26-5	Toluene-d8 (Surr)	96		80-120

HOLDING TIMES Volatiles

Site Name: Kessler Volatiles

Lab ID	Sample ID	Matrix	Analyte	Sample Date	Date Analyzed	Analysis Hold Time (days)	Days to Analysis	Qualify
460-254696-02	RW-1	Groundwater	Volatiles	3/14/2022	3/21/2022	14	7.0	
460-254696-03	MW-8	Groundwater	Volatiles	3/14/2022	3/21/2022	14	7.0	
460-254696-04	MW-2	Groundwater	Volatiles	3/15/2022	3/21/2022	14	6.0	
460-254696-05	MW-2D	Groundwater	Volatiles	3/15/2022	3/21/2022	14	6.0	
460-254696-06	MW-3	Groundwater	Volatiles	3/15/2022	3/21/2022	14	6.0	
460-254696-07	MW-4	Groundwater	Volatiles	3/15/2022	3/21/2022	14	6.0	
460-254696-08	MW-5A	Groundwater	Volatiles	3/15/2022	3/21/2022	14	6.0	
460-254696-09	MW-6	Groundwater	Volatiles	3/15/2022	3/21/2022	14	6.0	
460-254696-10	MW-7	Groundwater	Volatiles	3/15/2022	3/21/2022	14	6.0	
460-254696-11	EB-01-031522	Aqueous	Volatiles	3/15/2022	3/21/2022	14	6.0	
460-254696-12	TB-01-031422	Aqueous	Volatiles	3/14/2022	3/21/2022	14	7.0	

460-254696_Field Duplicate All Water

		"non responsive based on revised scope"
Site Name:	Kessler	Laboratory:
Project Number:	2000-770	Matrix: Groundwater

Sample ID	Analyte	Units	Result	Q	RL	Difference	Qualify
MW-2D	Chloroform	ug/L	0.33	J	1		
MW-2	Chloroform	ug/L	0.37	J	1	0.04	no

Sample ID	Analyte	Units	Result	Q	RL	Difference	Qualify
MW-2D	Trichloroethene	ug/L	0.34	J	1		
MW-2	Trichloroethene	ug/L	0.47	J	1	0.13	no

Duplicate Criteria: Aqueous matrices <30 % RPD or < \pm 1*RL, Soil/Solid matrices <40 %RPD or < \pm 2*RL.

Yes - Denotes %RPD or difference outside criteria.

NA - Duplicate relative percent difference or difference cannot be calculated.

U / ND - Not detected.

METALS DATA VALIDATION SUMMARY

Site Name: Project Number: Sampling Date(s):	Kessler 2000-770 3/14/2022				aboratory: ase/Order No.:	460-254696
Compound List:	Manganese					
Method:	6020B					
The following table in	dicates the data validation	on criteria	exami	ned, any pr	oblems identif	ied, and the QA action applied.
Data Validation Criter	ia:	Accept	FYI	Qualify	Comments	
Holding Times		X			8	
ICP/MS Tuning		\mathbf{X}				
Initial Calibrations		X				
Continuing Calibration	ns	X		*	8	
Blank Analysis		X				
Field Duplicate Analys	sis				NA	
Matrix Spike Analysis			X		MW-8	
Laboratory Control Sa		X		*	300000000000000000000000000000000000000	
Laboratory Duplicate		X			MW-8	
ICP/ICP-MS Internal S		X				
CRDL Standard					NA	
Serial Dilution	Î	X	3			
Interference Check Sa	mple Recoveries	X				
Overall Assessment of		X				
Other:					2	
General Comments:	Cooler Temp: 1.6°C					
	ion required. ation only, no qualificat jected, estimated or bias		ary.			n responsive based on revised scope"
				QA Sci	entist	

Date 04/05/2022

1A-IN INORGANIC ANALYSIS DATA SHEET METALS

Client Sample ID: RW-1 Lab Sample ID: 460-254696-2 Job No.: 460-254696-1 Lab Name: SDG ID.: Date Sampled: 03/14/2022 10:15 Matrix: Water Reporting Basis: WET Date Received: 03/16/2022 18:40 CAS No. Analyte Result RL MDL Units С Q DIL Method 760 7439-96-5 Manganese 8.0 1.5 ug/L 6020B 1

1A-IN INORGANIC ANALYSIS DATA SHEET METALS

Client Sample ID: MW-8 Lab Sample ID: 460-254696-3 Job No.: 460-254696-1 Lab Name: SDG ID.: Date Sampled: 03/14/2022 10:30 Matrix: Water Reporting Basis: WET Date Received: 03/16/2022 18:40 CAS No. Analyte Result RL MDL Units С Q DIL Method 7439-96-5 Manganese 1230 8.0 1.5 ug/L 6020B 1

Site Name: Kessler Metals

Lab ID	Sample ID	Matrix	Analyte	Sample Date	Analyzed Date		Days to Analysis	Qualify
		lar.				(days)		
460-254696-02	RW-1	Groundwater	Manganese	3/14/2022	3/22/2022	180	6.0	
460-254696-03	MW-8	Groundwater	Manganese	3/14/2022	3/22/2022	180	8.0	

5A-IN MATRIX SPIKE SAMPLE RECOVERY METALS

Client ID: MW-	Lab	Lab ID: 460-254696-3 MS								
Lab Name: "non respo	nsive based on revised scope		Job	Job No.: 460-254696-1						
SDG No.:		_								
Matrix: Water	Matrix: Water Concentration Units: ug/L									
% Solids:										
Analyte SSR C Result (SR) C Spike Added (SA) %R Control Limit %R Q Method										
Manganese	1545	1230	250	128	75-125	4	6020B			

SSR = Spiked Sample Result

FYI MS Recovery outside of the laboratory control limits, associated batched samples include RW-1 and MW-8. Parent sample MW-8. Sample concentrations > 4x spike concentration.

Calculations are performed before rounding to avoid round-off errors in calculated results.

CONVENTIONALS DATA VALIDATION SUMMARY

Site Name: Project Number: Sampling Date(s):	Kessler 2000-770 3/14/2022				.aboratory: Case/Order No.:	460-254696	
Compound List:	Total Suspended Solid	ds					
Method:	SM 2540D						
The following table ind	icates the data validatio	n criteria e	examine	ed, any p	roblems identifi	ed, and the QA action app	olied.
Data Validation Criteria	a:	Accept	FYI	Qualify	Comments		
Holding Times Initial Calibrations Continuing Calibrations Blank Analysis Field Duplicate Analysis Matrix Spike Analysis (Laboratory Control San Laboratory Duplicate A Overall Assessment of 1 Other: General Comments:	is (MS/MSD) mple Analysis (LCS) nalysis	X X X X			NA NA NA NA MW-8		
Accept - No qualification FYI - For your information Qualify - Qualify as rejumber of the NR - Not Reviewed NA - Not Applicable	tion only, no qualification		nry.				
				QA So	cientist	on responsive based on revised scope" 1/5/2022	

Date

1B-IN INORGANIC ANALYSIS DATA SHEET GENERAL CHEMISTRY

Client Sample ID: RW-1 Lab Sample ID: 460-254696-2 Job No.: 460-254696-1 Lab Name: SDG ID.: Matrix: Water Date Sampled: 03/14/2022 10:15 Reporting Basis: WET Date Received: 03/16/2022 18:40 CAS No. Analyte Result RL MDL Units С Q DIL Method 2.5 2.5 2.5 mg/L Total Suspended 1 SM 2540D U

Solids

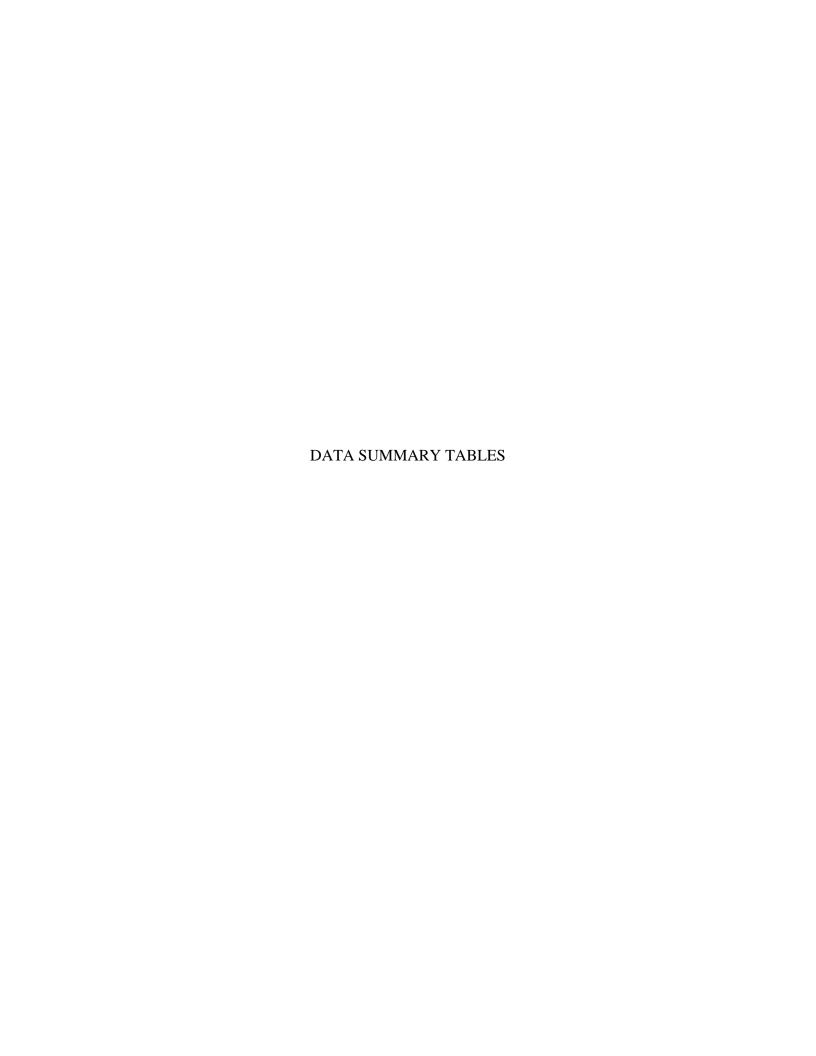
1B-IN INORGANIC ANALYSIS DATA SHEET GENERAL CHEMISTRY

Client Sample ID: MW-8 Lab Sample ID: 460-254696-3

Lab Name: Job No.: 460-254696-1

SDG ID.:

Matrix: Water Date Sampled: 03/14/2022 10:30


Reporting Basis: WET Date Received: 03/16/2022 18:40

CAS No.	Analyte	Result	RL	MDL	Units	С	Q	DIL	Method
	Total Suspended Solids	2.5	2.5	2.5	mg/L	Ū		1	SM 2540D

HOLDING TIMES WC

Site Name: Kessler Wet Chemistry

Lab ID	Sample ID	Matrix	Analyte	Sample Date	Date Analyzed	Analysis Hold Time (days)	Days to Analysis	Qualify
460-254696-02	RW-1	Groundwater	Total Suspended Solids	3/14/2022	3/20/2022	7	6	
460-254696-03	MW-8	Groundwater	Total Suspended Solids	3/14/2022	3/21/2022	7	7	

KESSLER 1st Half 2022 Groundwater, 3/14-15/2022 # 460-254696, Project# 2000-770

Sample Location		RV	V-1	T	MW-8			MW-2			MW-2D			MW-3			MW-4			MW-5A			MW-6			MW-7			EB-01-031522			TB-01-031422		
Lab ID	8 72	(a) (iii)	100000000000000000000000000000000000000			50-254696-03		460-254696-04			460-254696-05			460-254696-06			460-254696-07		460-254696-08			460-254696-09			460-254696-10			460-254696-11			460-254696-12			
Sample Date	9 19		3/14/2022 3/14/2022		1000	3/15/2022			3/15/2022			3/15/2022			3/15/2022		3/15/2022			3/15/2022			3/15/2022			3/15/2022			3/14/2022					
Matrix	- 0	Groundwater		,	Groundwater		-	Groundwater			Groundwater			Groundwater			Groundwater		T.	Groundwater			Groundwater			Groundwater			Aqueous			Aqueous		
Remarks	* **	Croundwater		+	Joundward		ici	Groundwater			FD of MW-2			Glottidwaici			Groundwater		-	Glottidwater			Gioundwater		ici.	Gioundwater			Equipment Blank					
Parameter	Units	Result	O R	T.	Result	0	RI.	Result	0	RT.	Result		_	Result	0	RI.	Result	0	RI.	Result	0	RI.	Result	0	RL.	Result	0	RL		_	_		Q RL	
Volatiles	СШО	resure	V I	-	recourt	X.	100	resure	V I		recourt	× I		recount	×	100	recourt	-V	T.C.	resur	× I	-	resur	×	142	recourt	×	100	resure	X.I	T.C.	resure	V III	
1.1.1-Trichloroethane	ug/L	19		1 [17	П	1		U	1	- 1	U	1		U	1		U	1	43	Т	1		U	1	16		1	Г	U	1	- 1	U 1	
1.1.2.2-Tetrachloroethane	ug/L		U	i		IJ	1		U	1		U	1		U	1		U	1		U	1		U	1	10	U	1		Ū	1		U 1	
1,1,2-Trichloroethane	ug/L		U			U	1	- 1	U	1	1	U	1		U	1		U	1			1		U	1		U	1	1.0	U	1	- i	U 1	
1,1-Dichloroethane	ug/L	160	U			II	1	- 22	U	1	5	U	1		U	1		U	1	0 29		1	- 50	U	1	0 34	J	1	9	U	1		U 1	
1,1-Dichloroethene	ug/L	32		_	27	_	1	89	100	1		U	1		U	1		U	1	0 49	-25	1	89	U	1	17	,	1		U	1	- 8	U 1	
1,2,4-Trichlorobenzene	ug/L	32	U	-	21	II	1	- 6	U	1		U	1		U	1		U	1	0 12	U	1	- 0	U	1	11	U	1		U	1	-	U 1	
1,2-Dibromo-3-Chloropropane	ug/L	9	U			U	1	- 6		1		U	1	-	U	1	- 1	U	1		_	1	-	U	1		U	1		U	1	- 1	U 1	
1.2-Dibromoethane	ug/L	00	U	_	_	U	1	150		1	1	U	1	(3)	U	1	- 5	U	1		-	1	- 5	U	1	100	U	1	22	U	1	- 5	U 1	
1,2-Dichlorobenzene	ug/L	eş .	U	_		U	1	- 5	U	1	£ 5	U	1	4	U	1		U	1		U	1	- 29	U	1		U	1		U	1	- 4	U 1	
1,2-Dichloroethane	ug/L	Q.	U	-	_	U	1	X:	U	1		U	1		U	1	- 15	U	1		U	1	8	U	1		U	1	-	U	1		U 1	
1,2-Dichloropropane	ug/L	2	U	_	$\overline{}$	U	1	- 6	U	1		U	1	9	U	1	- 10	U	1		U	1	- 6	U	1		U	1		U	1		U 1	
1.3-Dichlorobenzene	ug/L		U	_		U	1		U	1		U	1		U	1	10	U	1		U	1	-	U	1		U	1		U	1		U 1	
1.4-Dichlorobenzene	ug/L	(A)	U	-		U	1	22	U	1	5. 3	U	1	12	U	1	X.	U	1		200	1	- 50	U	1	1 5	U	1	10	U	1	- 3	U 1	
2-Butanone (MEK)	ug/L	33	U			TT	5	- 86	17.7	5	8 8	U	5	38	U	5	- 5	U	5			5	- 83	U	5		U	5		U	5	- 5	U 5	
2-Hexanone	ug/L		U			U	5			5		U	5		U	5	-	U	5			5	- 9	U	5		U	5		U	5		U 5	
4-Methyl-2-pentanone (MIBK)	ug/L	5	U		-	U	5	- 6		5	-	U	5	9	U	5	- 6	U	5			5	- 8	U	5		U	5		U	5	- 6	U 5	
Acetone (VIIII)	ug/L	<u>.</u>	U	-		U	5	- 64		5	6 25	- 1/1/2	5		U	5	10.0	U	5			5	- 8	U	5	100	U	5	12	U	5	- 5	U 5	
Benzene	ug/L	2	U	1		U	1	- 25	U	1	g s	U	1	0	U	1	20	U	1	8 3	U	1	- 29	U	1		U	1		U	1	8	U 1	
Bromoform	ug/L	9.	U	1		U	1	- 8		1	2 2	U	1		U	1	11.	U	1		U	1	- 8	U	1		U	1		U	1		U 1	
Bromomethane	ug/L		U	_		U	1	- 6		1		U	1	> -	U	1	-	U	1			1	- 6	U	1		U	1	1.5	U	1	- 7	U 1	
Carbon disulfide	ug/L		U	_		U	1	- 6	U	1		U	1		U	1		U	1			1		U	1		U	1	1.4	U	1	- 7	U 1	
Carbon tetrachloride	ug/L	157	U	_	- 2	U	1	- 23		1	8	U	1	100	U	1	8.	U	1			1	- 2	U	1		U	1	10	U	1	- 8	U 1	
Chlorobenzene	ug/L	3	U	-		U	1	- 10	U	1	E 8	U	1	35	U	1	5.	U	1	0 73	I	1	- 83	U	1	0 68	J	1	-	U	1	3.	U 1	
Chlorobromomethane	ug/L		U	1	-	U	1	- 4		1		U	1		U	1		U	1		U	1	- 4	U	1		U	1		U	1		U 1	
Chlorodibromomethane	ug/L		U	1		U	1	- 6	U	1		U	1		U	1		U	1		U	1		U	11		U	1	100	U	1		U 1	
Chloroethane	ug/L		U			U	1		U	1		U	1		U	1	Ĭ	U	1		U	1		U	1		U	1	36	U	1		U 1	
Chloroform	ug/L	2	U	1	-	U	1	0 37	J	1	0 33	J	1		U	1	- 8	U	1		U	1	- 19	U	1		U	1		U	1	- 6	U 1	
Chloromethane	ug/L	es .	U	_		U	1	100	U	1		U	1		U	1	- 8	U	1			1	85	U	1	- 9	U	1		U	1		U 1	
cis-1,2-Dichloroethene	ug/L	0 66	J	1	0 74	J	1	- 8	U	1	9	U	1	2	U	1	(U	1	0 86	J	1	0 39	J	1	0.8	J	1		U	1	1	U 1	
cis-1,3-Dichloropropene	ug/L	70	U		Carrier C	U	1	90	U	1		U	1		U	1		U	1		U	1	-	U	1		U	1		U	1		U 1	
Dichlorobromomethane	ug/L		U	1		U	1		U	1		U	1		U	1		U	1		U	1		U	1		U	1		U	1		U 1	
Ethylbenzene	ug/L	4	U	1	3	U	1	25	1000	1	S 5	U	1	4	U	1	16	U	1	i i		1	\$5	U	1		U	1		U	1	×	U 1	
Methylene Chloride	ug/L		U	_		U	1	- 6		1		U	1		U	1	12	U	1			1		U	1		U	1		U	1		U 1	
Styrene	ug/L		U	1		U	1		U	1		U	1		U	1		U	1		U	1	- 6	U	1		U	1	1	U	1		U 1	
Tetrachloroethene	ug/L	0 88	J	1	0 79	J	1		U	1		U	1	e d	U	1		U	1		U	1		U	1	0 55	J	1		U	1		U 1	
Toluene	ug/L		U	1		U	1		U	1		U	1		U	1	Î	U	1			1		U	1		U	1		U	1	Ì	U 1	
trans-1,2-Dichloroethene	ug/L	Ci .	U	1		U	1	89	U	1		U	1		U	1	20	U	1		U	1	89	U	1	10	U	1		U	1	- 2	U 1	
trans-1,3-Dichloropropene	ug/L	2	U	_		U	1	- 6	U	1		U	1		U	1	(*)	U	1		U	1	- 6	U	1		U	1	1 1	U	1	Ţ.	U 1	
Trichloroethene	ug/L	34		1	28		1	0 47	J	1	0 34	J	1	0 62	J	1	0 71	J	1	31		1	50	U	1	11		1		U	1		U 1	
Vinyl chloride	ug/L		U	1		U	1		U	1		U	1		U	1		U	1		U	1		U	1		U	1		U	1		U 1	
Xylenes, Total	ug/L	2	U 2	2	3	U	2	\$2	U	2	8 5	U	2	4	U	2	8	U	2	a s	U	2	\$3	U	2		U	2	9	U	2	1	U 2	
Total Metals						186		- 10										- **																
Manganese	ug/L	760		8	1230		8		NA			NA			NA			NA			NA			NA			NA			NA			NA	
Conventionals				_									_						_			_												
Total Suspended Solids	mg/L	24	U 2	5	-	U	25	25	NA	П	6 5	NA	18	2	NA	2 4	100	NA		1	NA	8	150	NA			NA	5 35		NA	8 8	14	NA	

